CHAPTER

MACHINE INSTRUCTIONS
AND PROGRAMS

CHAPTER OBJECTIVES

In this chapter you will learn about:

+ Machine instructions and program execution, including
branching and subroutine call and return operations

» Number representation and addition/subtraction in the
2’s-complement system

. Addressing methods for accessing register and memory
operands

« Assembly language for representing machine instructions. data,
and programs

« Program-controlled Input/Output operations

+ Operations on stack. queue. list. linked-list. and array data
structures

25

26

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

This chapter considers the way programs are executed in a computer from the ma-
chine instruction set viewpoint. Chapter | introduced the general concept that both
program instructions and data operands are stored in the memory. In this chapter, we
study the ways in which sequences of instructions are brought from the memory into
the processor and executed to perform a given task. The addressing methods com-
monly used for accessing operands in memory locations and processor registers are
presented.

The emphasis here is on basic concepts. We use a generic style to describe ma-
chine instructions and operand addressing methods that are typical of those found in
commercial processors. A sufficient number of instructions and addressing methods
are introduced to enable us to present complete, realistic programs for simple tasks.
These generic programs are specified at the assembly language level. In assembly lan-
guage, machine instructions and operand addressing information are represented by
symbolic names. A complete instruction set is often referred to as the instruction ser
architecture (ISA) of a processor. In addition to specifying instructions, an ISA also
specifies the addressing methods used for accessing data operands and the processor
registers available for use by the instructions. For the discussion of basic concepts in
this chapter, it is not necessary to define a complete instruction set, and we will not
attempt to do so. Instead, we will present enough examples to illustrate the capabilities
needed.

Chapter 3 presents ISAs for three commercial processors produced by the ARM.,
Motorola, and Intel companies. This chapter’s generic programs are presented in
Chapter 3 in each of those three instruction sets, providing the reader with examples
from real machines.

The vast majority of programs are written in high-level languages such as C, C++,
Java, or Fortran. The main purpose of using assembly language programming in this
book is to describe how computers operate. To execute a high-level language program
on a processor, the program must first be translated into the assembly language of that
processor. The assembly language is a readable representation of the machine language
for the processor. The relationship between high-level language and machine language
features is a key consideration in computer design. We will discuss this issue a number
of times.

All computers deal with numbers. They have instructions that perform basic arith-
metic operations @n data operands. Also, during the process of executing the machine
instructions of a program, it is necessary to perform arithmetic operations to generate
the numbers that represent addresses for accessing operand locations in the memory.
To understand how these tasks are accomplished, the reader must know how numbers
are represented in a computer and how they are manipulated in addition and subtraction
operations. Therefore, in the first section of this chapter, we will introduce this topic.
A detailed discussion of logic circuits that implement computer arithmetic is given in
Chapter 6.

In addition to numeric data, computers deal with characters and character strings
in order to process textual information. Here, in the first section, we also describe how
characters are represented in the computer.

2.1 NUMBERS, ARITHMETIC OPERATIONS, AND CHARACTERS

2.1 NUMBERS, ARITHMETIC OPERATIONS, AND CHARACTERS

Computers are built using logic circuits that operate on information represented by two-
valued electrical signals (see Appendix A). We label the two values as 0 and I: and we
define the amount of information represented by such a signal as a bir of information,
where bit stands for binary digir. The most natural way to represent a number in a
computer system is by a string of bits, called a binary number. A text character can also
be represented by a string of bits called a character code.

We will first describe binary number representations and arithmetic operations on
these numbers, and then describe character representations.

2.1.1 NUMBER REPRESENTATION
Consider an n-bit vector
B = [7,1,, Pe-- b]b()

where b; = 0or | forO <i < n — 1. This vector can represent unsigned integer values
V in the range 0 to 2" — 1. where

VBY=bh, x2" "+ 4+b x2 4 hyx2"

We obviously need to represent both positive and negative numbers. Three systems are
used for representing such numbers:

* Sign-and-magnitude
+ I’s-complement

e 2's-complement

In all three systems. the leftmost bit is 0 for positive numbers and 1 for negative
numbers. Figure 2.1 illustrates all three representations using 4-bit numbers. Positive
values have identical representations in all systems. but negative values have different
representations. In the sign-and-magnitude system. negative values are represented by
changing the most significant bit (b3 in Figure 2.1) from 0 to I in the B vector of
the corresponding positive value. For example. +5 is represented by 0101, and —5 is
represented by 1101, In / 's-complement representation. negative values are obtained by
complementing each bit of the corresponding positive number. Thus. the representation
for —3 is obtained by complementing each bit in the vector 0011 to yield 1100. Clearly.
the same operation. bit complementing. is done in converting a negative number to
the corresponding positive value. Converting either way is referred to as forming the
I’s-complement of a given number. The operation of forming the I's-complement of a
given number is equivalent to subtracting that number from 2" — . that is, from 1111
in the case of the 4-bit numbers in Figure 2.1. Finally. in the 2 s-complement system,
forming the 2’s-complement of a number is done by subtracting that number from 2".

27

28

CHAPTER 2 ¢ MACHINE INSTRUCTIONS AND PROGRAMS

B Values represented

Sign and

by /73/’ b magnitude I's complement 2’s complement
0111 +7 +7 +7
0110 +6 +6 +6
0101 +5 +5 +5
0100 +4 +4 +4
0011 +3 +3 +3
0010 +2 +2 +2
0001 + 1 + 1 + 1
0000 +0 +0 +0
1000 -0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 -0 -1

Figure 2.1 Binary, signed-integer representations.

Hence. the 2’s-complement of a number is obtained by adding 1 to the 1’s-complement
of that number.

Note that there are distinct representations for +0 and —0 in both the sign-and-
magnitude and 1's-complement systems, but the 2's-complement system has only one
representation for 0. For 4-bit numbers. the value —8 is representable in the 2’s-
complement system but not in the other systems. The sign-and-magnitude system seems
the most natural, because we deal with sign-and-magnitude decimal values in manual
computations. The 1's-complement system is easily related to this system, but the 2’s-
complement system seems unnatural. However, we will show in Section 2.1.3 that
the 2’s-complement system yields the most efficient way to carry out addition and
subtraction operations. It is the one most often used in computers.

2.1.2 ADDITION OF POSITIVE NUMBERS

Consider adding two 1-bit numbers. The results are shown in Figure 2.2. Note that the
sum of 1 and 1 requires the 2-bit vector 10 to represent the value 2. We say that the
sunt is O and the carry-out is 1. In order to add multiple-bit numbers, we use a method
analogous to that used for manual computation with decimal numbers. We add bit pairs
starting from the low-order (right) end of the bit vectors, propagating carries toward
the high-order (left) end.

2.1 NUMBERS, ARITHMETIC OPERATIONS, AND CHARACTERS

0 1 0 |
+ 0 + 0 + 1 + 1
0 1 1 10

?

Carry-out

Figure 2.2 Addition of 1-bit numbers.

2.1.3 ADDITION AND SUBTRACTION OF SIGNED NUMBERS

We introduced three systems for representing positive and negative numbers, or, simply,
signed numbers. These systems differ only in the way they represent negative values.
Their relative merits from the standpoint of ease of performing arithmetic operations
can be summarized as follows: The sign-and-magnitude system is the simplest repre-
sentation, but it is also the most awkward for addition and subtraction operations. The
1’s-complement method is somewhat better. The 2’s-complement system is the most
efficient method for performing addition and subtraction operations.

To understand 2’s-complement arithmetic, consider addition modulo N (written as
mod N). A helpful graphical device for the description of addition mod N of positive
integers is a circle with the N values. 0 through N — 1. marked along its perimeter, as
shown in Figure 2.3a. Consider the case N = 6. The operation (7 +4) mod 16 yields
the value 11. To perform this operation graphically, locate 7 on the circle and then move
4 units in the clockwise direction to arrive at the answer 11. Similarly, (9 + 14) mod
16 = 7: this is modeled on the circle by locating 9 and moving 14 units in the clockwise
direction to arrive at the answer 7. This graphical technique works for the computation
of (¢ + by mod 16 for any positive numbers ¢ and b, that is. to perform addition, locate
« and move b units in the clockwise direction to arrive at (¢ + /) mod 16.

Now consider a different interpretation of the mod 16 circle. Let the values O
through 15 be represented by the 4-bit binary vectors 0000. 0001. 1111, according
to the binary number system. Then reinterpret these binary vectors to represent the
signed numbers from —8 through +7 in the 2’s-complement method (see Figure 2.1),
as shown in Figure 2.35.

Let us apply the mod 16 addition technique to the simple example of adding
+7 to —3. The 2’s-complement representation for these numbers is 0111 and 1101,
respectively. To add these numbers. locate 0111 on the circle in Figure 2.3b. Then
move 1101 (13) steps in the clockwise direction to arrive at 0100, which yields the
correct answer of +4. If we perform this addition by adding bit pairs from right to left,
we obtain

111
101
100

-+
O —

Carry-out

29

30

CHAPTER 2 -+ MACHINE INSTRUCTIONS AND PROGRAMS

1000

(b) Mod 16 system for 2’'s-complement numbers

Figure 2.3 Modular number systems and the
2's-complement system.

Note that if we ignore the carry-out from the fourth bit position in this addition. we
obtain the correct answer. In fact, this is always the case. Ignoring this carry-out is a
natural result of using mod N arithmetic. As we move around the circle in Figure 2.35.
the value next to 1111 would normally be 10000. Instead. we go back to the value 0000.

We now state the rules governing the addition and subtraction of n-bit signed
numbers using the 2’s-complement representation system.

I, To add two numbers, add their n-bit representations. ignoring the carry-out signal
from the most significant bit (MSB) position. The sum will be the algebraically
correct value in the 2's-complement representation as long as the answer is in the
range —2" ! through 42" "' — [.

2.1 NUMBERS, ARITHMETIC OPERATIONS, AND CHARACTERS

to

To subtract two numbers X and Y. that is. to perform X — Y. form the 2’s-
complement of Y and then add it to X. as in rule 1. Again. the result will be
the algebraically correct value in the 2's-complement representation system if the
answer is in the range —2" "' through +2" ' — I.

Figure 2.4 shows some examples of addition and subtraction. In all these 4-bit
examples. the answers fall into the representable range of —8 through +7. When answers
do not fall within the representable range, we say that arithmetic overflow has occurred.
The next section discusses such situations. The four addition operations () through (d)
in Figure 2.4 follow rule 1, and the six subtraction operations (¢) through () follow
rule 2. The subtraction operation requires the subtrahend (the bottom value) to be

(a) 0010 (+2)) 0100 (+4)

+ 0011 (+3) + 1010 (~6)

0101 (+5) 1110 (=2)

() 1011 (-5) () 0111 (+7)

+ 1110 (=2) + 1101 (-3)

1001 (=7) 0100 (+4)
{e) 1101 (-3)) 1101
1001 (-7) __> + 0111

0100 (+4)
() 0010 (+2) 0010
- 0100 (+4) > + 1100

1110 (-2)
(£) 0110 (+6) 0110
- 0011 (+3) :> + 1101

0011 (+3)
() 1001 (-7) 1001
- 1011 (-5) :> + 0101

1110 (-2)
() 1001 (-7 1001
- 0001 (+1) ::> + 1111

1000 (-8)
10 0010 (+2) 0010
- 1101 (—3) __> + 0011

0101 (+5)

Figure 2.4 2’'s-complement add and subtract operations.

31

32

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

2’s-complemented. This operation is done in exactly the same manner for both positive
and negative numbers.

We often need to represent a number in the 2’s-complement system by using a
number of bits that is larger than some given size. For a positive number, this is achieved
by adding Os to the left. For a negative number, the leftmost bit, which is the sign bit,
isa 1, and a longer number with the same value is obtained by replicating the sign bit
to the left as many times as desired. To see why this is correct, examine the mod 16
circle of Figure 2.3b. Compare it to larger circles for the mod 32 or mod 64 cases. The
representations for values —1, —2, etc., would be exactly the same, with 1s added to the
left. In summary, to represent a signed number in 2’s-complement form using a larger
number of bits, repeat the sign bit as many times as needed to the left. This operation
is called sign extension.

The simplicity of either adding or subtracting signed numbers in 2’s-complement
representation is the reason why this number representation is used in modern com-
puters. It might seem that the 1’s-complement representation would be just as good
as the 2’s-complement system. However, although complementation is easy, the result
obtained after an addition operation is not always correct. The carry-out, ¢,, cannot be
ignored. If ¢, = 0, the result obtained is correct. If ¢, = 1, then a 1 must be added to the
result to make it correct. The need for this correction cycle, which is conditional on the
carry-out from the add operation, means that addition and subtraction cannot be imple-
mented as conveniently in the 1’s-complement system as in the 2’s-complement system.

2.1.4 OVERFLOW IN INTEGER ARITHMETIC

In the 2’s-complement number representation system, n bits can represent values in
the range —2""! to +2" ! — [. For example. using four bits. the range of numbers
that can be represented is —8 through +7. as shown in Figure 2.1. When the result of
an arithmetic operation is outside the representable range. an arithmetic overflow has
occurred.

When adding unsigned numbers, the carry-out, ¢,. from the most significant bit
position serves as the overflow indicator. However, this does not work for adding signed
numbers. For example, when using 4-bit signed numbers, if we try to add the numbers
+7 and +4, the output sum vector, S, is 1011, which is the code for —5. an incorrect
result. The carry-out signal from the MSB position is 0. Similarly, if we try to add —4
and —6, we get S = 0110 = +6, another incorrect result. and in this case, the carry-out
signal 1s 1. Thus, overflow may occur if both summands have the same sign. Clearly.
the addition of numbers with different signs cannot cause overflow. This leads to the
following conclusions:

1. Overflow can occur only when adding two numbers that have the same sign.
2. The carry-out signal from the sign-bit position is not a sufficient indicator of over-
flow when adding signed numbers.

A simple way to detect overflow is to examine the signs of the two summands X and Y
and the sign of the result. When both operands X and Y have the same sign, an overflow
occurs when the sign of S is not the same as the signs of X and Y.

A

| .',,2’.’2.1 BYTE ADDRESSABILITY ar

b

2.2 MEMORY LOCATIONS AND ADDRESSES
2.1.5 CHARACTERS

[n addition to numbers. computers must be able to handle nonnumeric text informa-
tion consisting of characters. Characters can be letters of the alphabet, decimal digits,
punctuation marks, and so on. They are represented by codes that are usually eight bits
long. One of the most widely used such codes is the American Standards Committee
on Information Interchange (ASCII) code described in Appendix E.

/

2.2 MEMORY LOCATIONS AND ADDRESSES

Number and character operands. as well as instructions. are stored in the memory of a
computer. We will now consider how the memory is organized. The memory consists
of many millions of storage cells, each of which can store a bit of information having
the value O or 1. Because a single bit represents a very small amount of information.
bits are seldom handled individually. The usual approach is to deal with them in groups
of fixed size. For this purpose. the memory is organized so that a group of 1 bits can
be stored or retrieved in a single. basic operation. Each group of n bits is referred to as
a word of information. and #1 is called the word length. The memory of a computer can
be schematically represented as a collection of words as shown in Figure 2.5.

Modern computers have word lengths that typically range from 16 to 64 bits. If the
word length of a computer is 32 bits. a single word can store a 32-bit 2’s-complement
number or four ASCII characters. each occupying 8 bits, as shown in Figure 2.6. A unit
of 8 bits is called a byre. Machine instructions may require one or more words for their
representation. We will discuss how machine instructions are encoded into memory
words in a later section after we have described instructions at the assembly language
level.

Accessing the memory to store or retrieve a single item of information. either a word
or a byte, requires distinct names or addresses for each item location. It is customary
to use numbers from O through 2* — 1. for some suitable value of k. as the addresses of
successive locations in the memory. The 2* addresses constitute the address space of
the computer. and the memory can have up to 2% addressable locations. For example, a
24-bit address generates an address space of 2°* (16,777.216) locations. This number
is usually written as 16M (16 mega). where 1M is the number 220(1.048.576). A 32-bit
address creates an address space of 22 or 4G (4 giga) locations. where 15 is 2*°. Other
notational conventions that are commonly used are K (kilo) for the number 210(1.024).
and T (tera) for the number 2.

:,"'

We now have three basic information quantities to deal with: the bit, byte. and word.
A byte is always 8 bits. but the word length typically ranges from 16 to 64 bits. It
is impractical to assign distinct addresses to individual bit locations in the memory.
The most practical assignment is to have successive addresses refer to successive byte

33

34 CHAPTER 2 ¢ MACHINE INSTRUCTIONS AND PROGRAMS

j———— s bits ——————|

——— first word
—— second word
/ y
e
—1— i-th word
—4— » last word
fl'
Figure 2.5 Memory words.
| 32 bits -
/73| b . . by | by
Ny _/" t— Sign bit: hy,= 0 for positive numbers
by = 1 for negative numbers
(a) A signed integer
¥ bits 8 bits 8 bits 8 bits
Vv V A V
ASCII ASCIl ASCII ASCII
character character character character

(b) Four characters

Figure 2.6 Examples of encoded information in a 32-bit word.

2.2 MEMORY LOCATIONS AND ADDRESSES

locations in the memory. This is the assignment used in most modern computers, and is
the one we will normally use in this book. The term byte-addressable memory is used
for this assignment. Byte locations have addresses 0, 1, 2, Thus, if the word length
of the machine is 32 bits, successive words are located at addresses 0, 4, &, ..., with
each word consisting of four bytes.

'
w i

'2.2.2 BIG-ENDIAN AND LITTLE-ENDIAN ASSIGNMENTS

There are two ways that byte addresses can be assigned across words. as shown in
Figure 2.7. The name big-endian is used when lower byte addresses are used for the more
significant bytes (the leftmost bytes) of the word. The name lirtle-endian is used for the
opposite ordering, where the lower byte addresses are used for the less significant bytes
(the rightmost bytes) of the word. The words “more significant™ and “less significant™
are used in relation to the weights (powers of 2) assigned to bits when the word represents
a number. as described in Section 2.1.1. Both little-endian and big-endian assignments
are used in commercial machines. In both cases, byte addresses 0. 4. 8. are taken
as the addresses of successive words in the memory and are the addresses used when
specifying memory read and write operations for words.

In addition to specifying the address ordering of bytes within a word, it is also
necessary to specify the labeling of bits within a byte or a word. The most common
convention. and the one we will use in this book. is shown in Figure 2.6¢. It is the

5

Word
address Byte address Byte address
0 0 1 2 3 0 3 2 1 0
4 4 5 6 7 4 7 6 5 4
LA O R AN I o R I T R (R A R (R A
(a) Big-endian assignment (b) Little-endian assignment

Figure 2.7 Byte and word addressing.

35

36

CHAPTER 2 ¢ MACHINE INSTRUCTIONS AND PROGRAMS

most natural ordering for the encoding of numerical data. The same ordering is also
used for labeling bits within a byte, that is. b7. bg. by, from left to right. There are
computers, however. that use the reverse ordering.

2.2.3 WORD ALIGNMENT

In the case of a 32-bit word length, natural word boundaries occur at addresses 0, 4.
8. ..., as shown in Figure 2.7. We say that the word locations have aligned addresses.
In general, words are said to be aligned in memory if they begin at a byte address
that is a multiple of the number of bytes in a word. For practical reasons associated
with manipulating binary-coded addresses, the number of bytes in a word is a power
of 2. Hence, if the word length is 16 (2 bytes), aligned words begin at byte addresses
0.2.4..... and for a word length of 64 (2° bytes), aligned words begin at byte addresses

There is no fundamental reason why words cannot begin at an arbitrary byte
address. In that case, words are said to have wunaligned addresses. While the most
common case is to use aligned addresses, some computers allow the use of unaligned
word addresses.

2.2.4 ACCESSING NUMBERS, CHARACTERS,
AND CHARACTER STRINGS

A number usually occupies one word. It can be accessed in the memory by specify-
ing its word address. Similarly. individual characters can be accessed by their byte
address.

In many applications, it is necessary to handle character strings of variable length.
The beginning of the string is indicated by giving the address of the byte containing
its first character. Successive byte locations contain successive characters of the string.
There are two ways to indicate the length of the string. A special control character with
the meaning “end of string™ can be used as the last character in the string, or a separate
memory word location or processor register can contain a number indicating the length
of the string in bytes.

2.3 MEMORY OPERATIONS

Both program instructions and data operands are stored in the memory. To execute an
instruction, the processor control circuits must cause the word (or words) containing
the instruction to be transferred from the memory to the processor. Operands and results
must also be moved between the memory and the processor. Thus. two basic operations
involving the memory are needed. namely. Load (or Read or Fetch) and Store (or
Write).

2.4 INSTRUCTIONS AND INSTRUCTION SEQUENCING

The Load operation transters a copy of the contents of a specific memory location
to the processor. The memory contents remain unchanged. To start a Load operation,
the processor sends the address of the desired location to the memory and requests that
its contents be read. The memory reads the data stored at that address and sends them
to the processor.

The Store operation transfers an item of information from the processor to a specific
memory location, destroying the former contents of that location. The processor sends
the address of the desired location to the memory. together with the data to be written
into that location.

An information item of either one word or one byte can be transferred between the
processor and the memory in a single operation. As described in Chapter 1, the processor
contains a small number of registers. each capable of holding a word. These registers
are either the source or the destination of a transfer to or from the memory. When a
byte is transferred. it is usually located in the low-order (rightmost) byte position of the
register.

The details of the hardware implementation of these operations are treated in
Chapters 5 and 7. In this chapter. we are taking the ISA viewpoint, so we concentrate
on the logical handling of instructions and operands. Specific hardware components.
such as processor registers, are discussed only to the extent necessary to understand the
execution of machine instructions and programs.

2.4 INSTRUCTIONS AND INSTRUCTION SEQUENCING

The tasks carried out by a computer program consist of a sequence of small steps. such
as adding two numbers, testing for a particular condition. reading a character from the
keyboard, or sending a character to be displayed on a display screen. A computer must
have instructions capable of performing four types of operations:

« Data transfers between the memory and the processor registers

* Arithmetic and logic operations on data

» Program sequencing and control

* /O transfers

We begin by discussing the first two types of instructions. To facilitate the discussion.,
we need some notation which we present first.

2.4.1 REGISTER TRANSFER NOTATION

We need to describe the transfer of information from one location in the computer to
another. Possible locations that may be involved in such transfers are memory locations.
processor registers. or registers in the I/O subsystem. Most of the time, we identify a
location by a symbolic name standing for its hardware binary address. For example,

37

38

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

names for the addresses of memory locations may be LOC, PLACE, A. VAR2: processor
register names may be RO, R5: and I/0 register names may be DATAIN, OUTSTATUS.
and so on. The contents of a location are denoted by placing square brackets around
the name of the location. Thus. the expression

R1 <« [LOC]

means that the contents of memory location LOC are transferred into processor regis-
ter R1.

As another example, consider the operation that adds the contents of registers R
and R2. and then places their sum into register R3. This action is indicated as

R3 « [RI] + [R2]

This type of notation is known as Register Transfer Notation (RTN). Note that the
right-hand side of an RTN expression always denotes a value. and the left-hand side is
the name of a location where the value is to be placed. overwriting the old contents of
that location.

2.4.2 ASSEMBLY LANGUAGE NOTATION

We need another type of notation to represent machine instructions and programs. For
this. we use an assembly language format. For example, an instruction that causes
the transfer described above, from memory location LOC to processor register R1. is
specified by the statement

Move LOC.RI

The contents of LOC are unchanged by the execution of this instruction, but the old
contents of register R are overwritten.

The second example of adding two numbers contained in processor registers R1
and R2 and placing their sum in R3 can be specified by the assembly language statement

Add RI.R2.R3

2.4.3 BASIC INSTRUCTION TYPES

The operation of adding two numbers is a fundamental capability in any computer. The
statement

C=A+B

in a high-level language program is a command to the computer to add the current
values of the two variables called A and B, and to assign the sum to a third variable.
C. When the program containing this statement is compiled. the three variables. A, B.
and C, are assigned to distinct locations in the memory. We will use the variable names
to refer to the corresponding memory location addresses. The contents of these loca-
tions represent the values of the three variables. Hence. the above high-level language

2.4 INSTRUCTIONS AND INSTRUCTION SEQUENCING

statement requires the action
C < [A] + [B]

to take place in the computer. To carry out this action, the contents of memory locations
A and B are fetched from the memory and transferred into the processor where their
sum is computed. This result is then sent back to the memory and stored in location C.

Let us first assume that this action is to be accomplished by a single machine
instruction. Furthermore, assume that this instruction contains the memory addresses
of the three operands — A, B, and C. This three-address instruction can be represented
symbolically as

Add AB.C

Operands A and B are called the source operands, C is called the destination operand,
and Add is the operation to be performed on the operands. A general instruction of this
type has the format

Operation Sourcel,Source2,Destination

If k bits are needed to specify the memory address of each operand, the encoded form
of the above instruction must contain 3k bits for addressing purposes in addition to the
bits needed to denote the Add operation. For a modern processor with a 32-bit address
space, a 3-address instruction is too large to fit in one word for a reasonable word length.
Thus, a format that allows multiple words to be used for a single instruction would be
needed to represent an instruction of this type.

An alternative approach is to use a sequence of simpler instructions to perform
the same task, with each instruction having only one or two operands. Suppose that
rwo-address instructions of the form

Operation Source.Destination
are available. An Add instruction of this type is
Add AB

which performs the operation B «<— [A] + [B]. When the sum is calculated, the result
is sent to the memory and stored in location B, replacing the original contents of this
location. This means that operand B is both a source and a destination.

A single two-address instruction cannot be used to solve our original problem,
which is to add the contents of locations A and B, without destroying either of them,
and to place the sum in location C. The problem can be solved by using another two-
address instruction that copies the contents of one memory location into another. Such
an instruction is

Move B.C

which performs the operation C <« [B]. leaving the contents of location B unchanged.
The word “Move” is a misnomer here; it should be “Copy.” However, this instruction
name is deeply entrenched in computer nomenclature. The operation C < [A] + [B]

39

40

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

can now be performed by the two-instruction sequence

Move B,C
Add AC

In all the instructions given above, the source operands are specified first, followed
by the destination. This order is used in the assembly language expressions for machine
instructions in many computers. But there are also many computers in which the order
of the source and destination operands is reversed. We will see examples of both
orderings in Chapter 3. It is unfortunate that no single convention has been adopted by
all manufacturers. In fact, even for a particular computer, its assembly language may
use a different order for different instructions. In this chapter, we will continue to give
the source operands first.

We have defined three- and two-address instructions. But, even two-address in-
structions will not normally fit into one word for usual word lengths and address sizes.
Another possibility is to have machine instructions that specify only one memory
operand. When a second operand is needed, as in the case of an Add instruction, it is
understood implicitly to be in a unique location. A processor register, usually called
the accumulator, may be used for this purpose. Thus, the one-address instruction

Add A

means the following: Add the contents of memory location A to the contents of the
accumulator register and place the sum back into the accumulator. Let us also introduce
the one-address instructions

Load A
and
Store A

The Load instruction copies the contents of memory location A into the accumulator,
and the Store instruction copies the contents of the accumulator into memory location
A. Using only one-address instructions, the operation C <— [A] + [B] can be performed
by executing the sequence of instructions

Load A
Add B
Store C

Note that the operand specified in the instruction may be a source or a destination,
depending on the instruction. In the Load instruction, address A specifies the source
operand, and the destination location, the accumulator, is implied. On the other hand.
C denotes the destination location in the Store instruction, whereas the source, the
accumulator, is implied.

Some early computers were designed around a single accumulator structure. Most
modern computers have a number of general-purpose processor registers — typically
8 to 32, and even considerably more in some cases. Access to data in these registers is
much faster than to data stored in memory locations because the registers are inside the

2.4 INSTRUCTIONS AND INSTRUCTION SEQUENCING

processor. Because the number of registers is relatively small, only a few bits are needed
to specify which register takes part in an operation. For example, for 32 registers, only
5 bits are needed. This is much less than the number of bits needed to give the address
of a location in the memory. Because the use of registers allows faster processing
and results in shorter instructions, registers are used to store data temporarily in the
processor during processing.

Let Ri represent a general-purpose register. The instructions

Load A.Ri

Store RiA
and

Add AR

are generalizations of the Load, Store, and Add instructions for the single-accumulator
case, in which register Ri performs the function of the accumulator. Even in these cases,
when only one memory address is directly specified in an instruction, the instruction
may not fit into one word.

When a processor has several general-purpose registers, many instructions involve
only operands that are in the registers. In fact, in many modern processors, computations
can be performed directly only on data held in processor registers. Instructions such as

Add RiRj
or
Add RiRjRk

are of this type. In both of these instructions, the source operands are the contents of
registers Ri and Rj. In the first instruction, Rj also serves as the destination register,
whereas in the second instruction, a third register, Rk, is used as the destination. Such
instructions, where only register names are contained in the instruction, will normally
fit into one word.

It is often necessary to transfer data between different locations. This is achieved
with the instruction

Move Source,Destination

which places a copy of the contents of Source into Destination. When data are moved
to or from a processor register, the Move instruction can be used rather than the Load or
Store instructions because the order of the source and destination operands determines
which operation is intended. Thus,

Move ARi
is the same as

Load ARi
and

Move Ri,A

11

42

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS
is the same as
Store Ri.A

In this chapter. we will use Move instead of Load or Store.
In processors where arithmetic operations are allowed only on operands that are in
processor registers. the C = A + B task can be performed by the instruction sequence

Move A.Ri
Move B.Rj
Add Ri.Rj
Move Rj.C

In processors where one operand may be in the memory but the other must be in a
register. an instruction sequence for the required task would be

Move A.R/
Add B.R/
Move Ri.C

The speed with which a given task is carried out depends on the time it takes to trans-
fer instructions from memory into the processor and to access the operands referenced
by these instructions. Transters that involve the memory are much slower than transfers
within the processor. Hence. a substantial increase in speed is achieved when several
operations are performed in succession on data in processor registers without the need
to copy data to or from the memory. When machine language programs are generated
by compilers from high-level languages. it is important to minimize the frequency with
which data is moved back and forth between the memory and processor registers.

We have discussed three-. two-. and one-address instructions. It is also possible
to use instructions in which the locations of all operands are defined implicitly. Such
instructions are found in machines that store operands in a structure called a pushdown
stack. In this case. the instructions are called zero-address instructions. The concept of
a pushdown stack is introduced in Section 2.8. and a computer that uses this approach
is discussed in Chapter 11.

2.4.4 INSTRUCTION EXECUTION AND STRAIGHT-LINE SEQUENCING

In the preceding discussion of instruction formats. we used the task C < [A] + |B]
for illustration. Figure 2.8 shows a possible program segment for this task as it appears
in the memory of a computer. We have assumed that the computer allows one memory
operand per instruction and has a number of processor registers. We assume that the
word length is 32 bits and the memory is byte addressable. The three instructions of the
program are in successive word locations. starting at location i. Since each instruction
is 4 bytes long. the second and third instructions start at addresses i + 4 and i + 8.
For simplicity. we also assume that a full memory address can be directly specified in
a single-word instruction. although this is not usually possible for address space sizes
and word lengths of current processors.

2.4 INSTRUCTIONS AND INSTRUCTION SEQUENCING

Address Contents
Begin execution here — f Move ARO)]
' 3-instruction
i+4 Add B.RO program
segment
i+8 Move RO.C
A -
B Data for
the program
C -

Figure 2.8 A program for C « [A] + [B].

Let us consider how this program is executed. The processor contains a register
called the program counter (PC). which holds the address of the instruction to be
executed next. To begin executing a program. the address of its first instruction (/ in
our example) must be placed into the PC. Then, the processor control circuits use the
information in the PC to fetch and execute instructions. one at a time. in the order of
increasing addresses. This is called straight-line sequencing. During the execution of
each instruction, the PC is incremented by 4 to point to the next instruction. Thus. after
the Move instruction at location i 4 8 is executed. the PC contains the value i + 12.
which is the address of the first instruction of the next program segment.

Executing a given instruction is a two-phase procedure. In the first phase. called
instruction feteh, the instruction is fetched from the memory location whose address
is in the PC. This instruction is placed in the instruction register (IR) in the processor.
At the start of the second phase. called instruction execute, the instruction in IR is
examined to determine which operation is to be performed. The specified operation
is then performed by the processor. This often involves fetching operands from the
memory or from processor registers. performing an arithmetic or logic operation. and
storing the result in the destination location. At some point during this two-phase
procedure, the contents of the PC are advanced to point to the next instruction. When
the execute phase of an instruction is completed, the PC contains the address of the
next instruction, and a new instruction fetch phase can begin. In most processors. the

43

44

CHAPTER 2 ¢ MACHINE INSTRUCTIONS AND PROGRAMS

execute phase itself is divided into a small number of distinct phases corresponding 1o
fetching operands. performing the operation. and storing the result.

2.4.5 BRANCHING

Consider the task of adding a list of n numbers. The program outlined in Figure 2.9 is
a generalization of the program in Figure 2.8. The addresses of the memory locations
containing the n numbers are symbolically given as NUMI, NUM2, NUMn, and
a separate Add instruction is used to add each number to the contents of register RO.
After all the numbers have been added. the result is placed in memory location SUM.

Instead of using a long list of Add instructions. it is possible to place a single
Add instruction in a program loop, as shown in Figure 2.10. The loop is a straight-line
sequence of instructions executed as many times as needed. It starts at location LOOP
and ends at the instruction Branch>0. During each pass through this loop. the address of

i Move NUMI.RO
i+4 Add NUM2.RO
i+8 Add NUM3,R0O
i+4n—-4 Add NUM~n.RO
i+4n Move R(O.SUM
SUM

NUMI

NUM?2

NUM=n

Figure 2.9 A siraightline program for
adding n numbers.

2.4 INSTRUCTIONS AND INSTRUCTION SEQUENCING

Move N.R1
Clear RO
LOOP
P Determine address of |
-~ "Next" number and add ~_-
Pr()gran] "Next" number to RO
loop
Decrement R
Branch>0 LOOP
Move RO.SUM
SUM
N H
NUMI
NUM?2
NUMn

Figure 2.10 Using a loop to add n numbers.

the next list entry is determined. and that entry is fetched and added to RO. The address
of an operand can be specified in various ways. as will be described in Section 2.5. For
now. we concentrate on how to create and control a program loop.

Assume that the number of entries in the list, 2, is stored in memory location N, as
shown. Register R1 is used as a counter to determine the number of times the loop is
executed. Hence. the contents of location N are loaded into register R at the beginning
of the program. Then, within the body of the loop, the instruction

Decrement Rl

reduces the contents of R1 by 1 each time through the loop. (A similar type of operation
is performed by an Increment instruction, which adds 1 to its operand.) Execution of
the loop is repeated as long as the result of the decrement operation is greater than
7€10.

45

46

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

We now introduce hranch instructions. This type of instruction loads a new value
into the program counter. As a result. the processor fetches and executes the instruction
at this new address. called the branch targer, instead of the instruction at the location
that follows the branch instruction in sequential address order. A conditional branch
instruction causes a branch only if a specified condition is satisfied. If the condition
is not satisfied. the PC is incremented in the normal way. and the next instruction in
sequential address order is fetched and executed.

In the program in Figure 2.10. the instruction

Branch>0 LOOP

(branch if greater than 0) is a conditional branch instruction that causes a branch to
location LOOP if the result of the immediately preceding instruction. which is the
decremented value in register R1. is greater than zero. This means that the loop is
repeated as long as there are entries in the list that are yet to be added to R0. At the
end of the nth pass through the loop. the Decrement instruction produces a value of
zero, and. hence. branching does not occur. Instead. the Move instruction is fetched
and executed. It moves the final result from R0 into memory location SUM.

The capability to test conditions and subsequently choose one of a set of alternative
ways to continue computation has many more applications than just loop control. Such
a capability is found in the instruction sets of all computers and is fundamental to the
programming of most nontrivial tasks.

2.4.6 CONDITION CODES

The processor keeps track of information about the results of various operations for use
by subsequent conditional branch instructions. This is accomplished by recording the
required information in individual bits. often called condition code flugs. These flags
are usually grouped together in a special processor register called the condition code
register or status register. Individual condition code flags are set to | or cleared to 0.
depending on the outcome of the operation performed.

Four commonly used flags are

N (negative) ~ Set to [if the result is negative: otherwise. cleared to

Z (zero) Set to | if the result is 0: otherwise. cleared to ()

V (overflow) Set to I if arithmetic overflow occurs: otherwise. cleared to 0

C (carry) Setto I if a carry-out results from the operation: otherwise.
cleared to 0

The N and Z flags indicate whether the result of an arithmetic or logic operation is
negative or zero. The N and Z flags may also be affected by instructions that trans-
fer data. such as Move. Load. or Store. This makes it possible for a later conditional
branch instruction to cause a branch based on the sign and value of the operand that
was moved. Some computers also provide a special Test instruction that examines

2.4 INSTRUCTIONS AND INSTRUCTION SEQUENCING

a value in a register or in the memory and sets or clears the N and Z flags accord-
ingly.

The V flag indicates whether overflow has taken place. As explained in Section
2.1.4. overflow occurs when the result of an arithmetic operation is outside the range
of values that can be represented by the number of bits available for the operands. The
processor sets the V flag to allow the programmer to test whether overflow has occurred
and branch to an appropriate routine that corrects the problem. Instructions such as
BranchifOverflow are provided for this purpose. Also. as we will see in Chapter 4. a
program interrupt may occur automatically as a result of the V bit being set. and the
operating system will resolve what to do.

The C flag is set to | if a carry occurs from the most significant bit position during
an arithmetic operation. This flag makes it possible to perform arithmetic operations
on operands that are longer than the word length of the processor. Such operations are
used in multiple-precision arithmetic, which is discussed in Chapter 6.

The instruction Branch>0. discussed in Section 2.4.5. is an example of a branch
instruction that tests one or more of the condition flags. It causes a branch if the value
tested is neither negative nor equal to zero. That is. the branch is taken if neither N
nor Z is 1. Many other conditional branch instructions are provided to enable a variety
of conditions 1o be tested. The conditions are given as logic expressions involving the
condition code flags.

In some computers, the condition code flags are affected automatically by instruc-
tions that perform arithmetic or logic operations. However. this is not always the case.
A number of computers have two versions of an Add instruction, for example. One
version. Add. does not affect the flags. but a second version. AddSetCC, does. This
provides the programmer — and the compiler — with more flexibility when preparing
programs for pipelined execution, as we will discuss in Chapter 8.

2.4.7 GENERATING MEMORY ADDRESSES

Let us return to Figure 2.10. The purpose of the instruction block at LOOP is to add
a different number from the list during each pass through the foop. Hence, the Add
instruction in that block must refer to a different address during each pass. How are
the addresses to be specified? The memory operand address cannot be given directly
in a single Add instruction in the loop. Otherwise. it would need to be modified on
cach pass through the loop. As one possibility. suppose that a processor register. Ri. is
used to hold the memory address of an operand. If it is initially loaded with the address
NUMI before the loop is entered and is then incremented by 4 on cach pass through
the loop. it can provide the needed capability.

This situation, and many others like it. give rise to the need for flexible ways to
specify the address of an operand. The instruction set of a computer typically provides
a number of such methods. called addressing modes. While the details differ from one
computer to another, the underlying concepts are the same. We will discuss these in the
next section.

a7

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

2.5 ADDRESSING MODES T

We have now seen some simple examples of assembly language programs. In general.
a program operates on data that reside in the computer’s memory. These data can be
organized in a variety of ways. If we want to keep track of students’ names. we can write
them in a list. If we want to associate information with each name. for example to record
telephone numbers or marks in various courses, we may organize this information in the
form of a table. Programmers use organizations called dura structures to represent the
data used in computations. These include lists. linked lists. arrays. queues. and so on.

Programs are normally written in a high-level language. which enables the program-
mer to use constants. local and global variables, pointers. and arrays. When translating
a high-level language program into assembly language. the compiler must be able to
implement these constructs using the facilities provided in the instruction set of the
computer in which the program will be run. The different ways in which the location
of an operand is specified in an instruction are referred to as addressing modes, In this
section we present the most important addressing modes found in modern processors.
A summary is provided in Table 2.1.

Table 2.1 Generic addressing modes

Name Assembler syntax Addressing function
Immediate #Value Operand = Value
Register Ri EA = Ri
Absolute (Direct) LOC EA = LOC
Indirect (Ri) EA = [R/}]
(LOC) EA = [LOC]
Index X(Ri) EA=[Ri]+ X
Base with index (Ri.Rj) EA ={[Ri] + [R}]
Base with index X(Ri.Rj) EA =[Ri]+ [Rj]+ X
and offset
Relative X(PC) EA=[PC]+ X
Autoincrement (Ri)+ EA = [Ri]:
Increment Ri
Autodecrement —(Ri) Decrement Ri;
EA = [Ri]

EA = effective address
Value = a signed number

2.5 ADDRESSING MODES

2.5.1 IMPLEMENTATION OF VARIABLES AND CONSTANTS

Vartables and constants are the simplest data types and are found in almost every
computer program. In assembly language. a variable is represented by allocating a
register or a memory location to hold its value. Thus. the value can be changed as
needed using appropriate instructions.

The programs in Section 2.4 used only two addressing modes to access variables.

We accessed an operand by specifying the name of the register or the address of the
memory location where the operand is located. The precise definitions of these two
modes are:

Register mode — The operand is the contents of a processor register: the name
(address) of the register is given in the instruction. }

Absolute mode — The operand is in a memory location: the address of this location
is given explicitly in the instruction. (In some assembly languages. this mode is
called Direct.)

The instruction
Move LOC.R2
.
uses these two modes. Processor registers are used as temporary storage locations where
the data in a register are accessed using the Register mode. The Absolute mode can
represent global variables in a program. A declaration such as
Integer A. B:
in a high-level language program will cause the compiler to allocate a memory location
to each of the variables A and B. Whenever they are referenced later in the program.
the compiler can generate assembly language instructions that use the Absolute mode
to access these variables.

Next. let us consider the representation of constants. Address and data constants

can be represented in assembly language using the Immediate mode.

Immediate mode — The operand is given explicitly in the instruction.

For example. the instruction

Move 2()01'num'(!1}m*- RO

places the value 200 in register RO. Clearly. the Immediate mode is only used to specity
the value of a source operand. Using a subscript to denote the Immediate mode is not
appropriate in assembly languages. A common convention is to use the sharp sign (#)
in front of the value to indicate that this value is to be used as an immediate operand.
Hence, we write the instruction above in the form

Move #200.R0

Constant values are used frequently in high-level language programs. For example.
the statement

A=B+6

49

50

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

contains the constant 6. Assuming that A and B have been declared earlier as variables
and may be accessed using the Absolute mode. this statement may be compiled as
follows:

Move B.RI
Add #6.R 1
Move RI.A

Constants are also used in assembly language to increment a counter. test for some bit
pattern. and so on.

2.5.2 INDIRECTION AND POINTERS

In the addressing modes that follow. the instruction does not give the operand or its
address explicitly. Instead. it provides information from which the memory address of
the operand can be determined. We refer to this address as the effective address (EA)
of the operand.

Indirect mode — The effective address of the operand is the contents of a register
or memory location whose address appears in the instruction.

We denote indirection by placing the name of the register or the memory address given
in the instruction in parentheses as illustrated in Figure 2.11 and Table 2.1.

""To execute the Add instruction in Figure 2.11a. the processor uses the value B.
which is in register RI. as the effective address of the operand. It requests a read
operation from the memory to read the contents of location B. The value read is the
desired operand. which the processor adds to the contents of register RO, Indirect
addressing through a memory location is also possible as shown in Figuré 2:115. In
this case. the processor tirst reads the contents of memory location A. then requests a

;
Add (R1).RO Add (A)RO
: Main
. menory
B Operand A B
R1 B Register B Operand
(a) Through a general-purpose register (b) Through a memory location

Figure 2.11 Indirect addressing.

2.5 ADDRESSING MODES

Address Contents

Move N.R1 A
Move #NUMI.R2 Initialization ’
Clear RO o

——= [OOP Add (R2).RO
Add #4.R2)
Decrement R1 R
Branch>0 LOOP ’
Move RO.SUM

Figure 2.12 Use of indirect addressing in the program of Figure 2.10.

second read operation using the value B as an address to obtain the operand.

_ The register or memory location that contains the address of an operand is called
a pointer. Indirection and the use of pointers are important and powerful concepts in
programming, Consider the analogy of a treasure hunt: In the instructions for the hunt
you may be Told to go to a house at a given address. Instead of finding the treasure
there. you find a note that gives you another address where you will find the treasure.
By changing the note. the location of the treasure can be changed. but the instructions
for the hunt remain the same. Changing the note is equivalent to changing the contents
of a pointer in a computer program. For example. by changing the contents of register
R1 or location A in Figure 2.11. the same Add instruction fetches different operands
10 add to register RO.

Let us now return to the program in Figure 2.10 for adding a list of numbers.
Indirect addressing can be used to access successive numbers in the list, resulting in
the program shown in Figure 2.12. Register R2 is used as a pointer to the numbers in
the list. and the operands are accessed indirectly through R2. The initialization section
of the program loads the counter value n from memory location N into R1 and uses the

Immediate addressing mode to place the address value NUM 1. which is the address of

the first number in the list. into R2. Then it clears R0 to 0. The tirst two instructions in
the loop in Figure 2.12 implement the unspecified instruction block starting at LOOP
in Figure 2.10. The first time through the loop. the instruction

Add (R2).RO

fetches the operand at location NUM1 and adds it to RO. The second Add instruction
adds 4 to the contents of the pointer R2. so that it will contain the address value NUM2
when the above instruction is executed in the second pass through the loop.

Consider the C-language statement

A="B:
where B is a pointer variable. This statement may be compiled into

Move B.RI
Move (RD.A

51

52

CHAPTER 2 + DMACHINE INSTRUCTIONS AND PROGRAMS

Using indirect addressing through memory, the same action can be achieved with
Move (B).A

Despite its apparent simplicity. indirect addressing through memory has proven to be of
limited usefulness as an addressing mode. and it is seldom found in modern computers.
We will see in Chapter 8 that an instruction that involves accessing the memory twice
to get an operand 1s not well suited to pipelined execution.

Indirect addressing through registers is used extensively. The program in Fig-
ure 2.12 shows the flexibility it provides. Also. when absolute addressing is not avail-
able. indirect addressing through registers makes it possible to access global variables
by first loading the operand’s address in a register.

2.5.3 INDEXING AND ARRAYS

The next addressing mode we discuss provides a different kind of flexibility for access-
ing operands. It is useful in dealing with lists and arrays.

Index mode — The effective address of the operand is generated by adding a con-
stant value to the contents of a register.

The register used may be either a special register provided for this purpose, or. more
commonly. it may be any one of a set of general-purpose registers in the processor.
In either case. it is referred to as an index register. We indicate the Index mode sym-
bolically as

X(Ri)

where X denotes the constant value contained in the instruction and R/ is the name of
the register involved. The effective address of the operand is given by

EA = X + [Ri]

The contents of the index register are not changed in the process of generating the
effective address. '

In an assembly language program. the constant X may be given either as an explicit
number or as a symbolic name representing a numerical value.' The way in which
a symbolic name is associated with a specific numerical value will be discussed in
Section 2.6. When the instruction is translated into machine code, the constant X is
given as a part of the instruction and is usually represented by fewer bits than the word
length of the computer. Since X is a signed integer, it must be sign-extended (see Section
2.1.3) to the register length before being added to the contents of the register.

Figure 2.13 illustrates two ways of using the Index mode. In Figure 2.134, the index
register, R, contains the address of a memory location, and the value X defines an offset
(also called a displacement) from this address to the location where the operand is found.
An alternative use is illustrated in Figure 2.13b. Here, the constant X corresponds to a
memory address. and the contents of the index register define the offset to the operand.
In either case, the effective address is the sum of two values; one is given explicitly in
the instruction, and the other is stored in a register.

1000

4{

20 = offset

J— 1020

1000

4{

20 = offset

—L 1020

Add 20(R1).R2

2.5 ADDRESSING MODES

1000
Operand
(a) Offset is given as a constant
Add T000(R1).R2
20

Operand

(b) Offset is in the index register

Figure 2.13 Indexed addressing.

R1

Rl

To see the usefulness of indexed addressing. consider a simple example involving
a list of test scores for students taking a given course. Assume that the list of scores.
beginning at location LIST. is structured as shown in Figure 2.14. A four-word memory
block comprises a record that stores the relevant information for each student. Each
record consists of the student’s identification number (ID). followed by the scores the
student earned on three tests. There are 1 students in the class. and the value 1 is stored
in location N immediately in front of the list. The addresses given in the figure for the
student IDs and test scores assume that the memory is byte addressable and that the
word length is 32 bits.

We should note that the list in Figure 2.14 represents a two-dimensional array
having 11 rows and four columns. Each row contains the entries for one student. and the
columns give the IDs and test scores.

53

54

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

N "
LIST Student 1D
LIST +4 Test 1
> Student 1
LIST +8 Test 2
LIST + 12 Test 3
LIST+ 16 Student 1D
Test 1
> Student 2
Test 2
Test 3

Figure 2.14 A list of students’ marks.

Suppose that we wish to compute the sum of all scores obtained on each of the tests
and store these three sums in memory locations SUM I, SUM2. and SUM3. A possible
program for this task is given in Figure 2.15. In the body of the loop. the program
uses the Index addressing mode in the manner depicted in Figure 2.13¢ to access each
of the three scores in a student’s record. Register RO is used as the index register. Before
the loop is entered. RO is set to point to the ID Jocation of the first student record: thus.
it contains the address LIST.

On the first pass through the loop. test scores of the first student are added to the
running sums held in registers R1. R2. and R3. which are initially cleared to 0. These
scores are accessed using the Index addressing modes 4(R0). 8(R0). and 12(R0). The
index register RO is then incremented by 16 to point to the ID location of the second
student. Register R4, initialized to contain the value n. is decremented by | at the end of
each pass through the loop. When the contents of R4 reach 0. all student records have
been accessed. and the loop terminates. Until then, the conditional branch instruction
transfers control back to the start of the loop to process the next record. The last three
instructions transfer the accumulated sums from registers R1. R2. and R3. into memory
locations SUM L. SUM2. and SUM3, respectively.

[t should be emphasized that the contents of the index register. RO. are not changed
when it is used in the Index addressing mode to access the scores. The contents of RO
are changed only by the last Add instruction in the loop. to move from one student
record to the next.

In general. the Index mode facilitates access to an operand whose location is defined
relative to a reference point within the data structure in which the operand appears. In
the example just given. the ID locations of successive student records are the reference
points. and the test scores are the operands accessed by the Index addressing mode.

2.5 ADDRESSING MODES 55

Move #LIST.RO

Clear R1

Clear R2 Srinivas Institute of Technalogy

Clear R3 e

o R PUTS AT S S S
—— LOOP Add HROLRI Call NO. iy

Add 8(RO).R2

Add 12(R0O).R3

Add #16.R0O

Decrement R4

Branch>0 LOOP

Move R1.SUMI

Move R2.SUM2

Move R3.SUM3

Figure 2.15 Indexed addressing used in accessing
test scores in the list in Figure 2.14.

‘

We have introduced the most basic form of indexed addressing. Several variations
of this basic form provide for very efficient access to memory operands in practical
programming situations. For example. a second register may be used to contain the
offset X. in which case we can write the Index mode as

(Ri.Rj)

The effective address is the sum of the contents of registers Ri and Rj. The second
register is usually called the base register. This form of indexed addressing provides
more flexibility in accessing operands. because both components of the effective address
can be changed.

As an example of where this flexibility may be useful. consider again the student
record data structure shown in Figure 2.14. In the program in Figure 2.15. we used
different index values in the three Add instructions at the beginning of the loop to
access different test scores. Suppose each record contains a large number of items,
many more than the three test scores of that example. In this case. we would need the
ability to replace the three Add instructions with one instruction inside a second (nested)
Joop. Just as the successive starting locations of the records (the reference points) are
maintained in the pointer register RO. offsets to the individual items relative to the
contents of RO could be maintained in another register. The contents of that register
would be incremented in successive passes through the inner loop. (See Problem 2.9.)

Yet another version of the Index mode uses two registers plus a constant. which
can be denoted as

SEPERA - X(Ri R)

56

CHAPTER 2 + DMNACHINE INSTRUCTIONS AND PROGRAMS

In this case. the effective address is the sum of the constant X and the contents of registers
Riand R j. This added flexibility is useful in accessing multiple components inside each
item in a record. where the beginning of an item is specified by the (Ri.R j) part of the
addressing mode. In other words. this mode implements a three-dimensional array.

2.5.4 RELATIVE ADDRESSING

We have defined the Index mode using general-purpose processor registers. A useful
version of this mode is obtained if the program counter. PC. is used instead of a general-
purpose register. Then. X(PC) can be used to address a memory location that is X bytes
away from the location presently pointed to by the program counter. Since the addressed
location is identified “relative™ to the program counter. which 'zllwuys identifies the
current execution point in a program. the name Relative mode is associated with this
type of addressing.

Relative mode — The effective address is determined by the Index mode using the
program counter in place of the general-purpose register Ri.

This mode can be used to access data operands. But, its most common use is to specify
the target address in branch instructions. An instruction such as

Branch>0 LOOP

. causes program execution to go to the branch target location identified by the name

LOOP if the branch condition is satisfied. This location can be computed by specifying
it as an offset from the current value of the program counter. Since the branch target
may be either before or after the branch instruction, the offset is given as a signed
number. .

Retall that during the execution of an instruction. the processor increments the PC
to point to the next instruction. Most computers use this updated value in computing the
effective address in the Relative mode. For example. suppose that the Relative mode
is used to generate the branch target address LOOP in the Branch instruction of the
program in Figure 2.12. Assume that the four instructions of the loop body. starting
at LOOP. are located at memory locations 1000. 1004. 1008. and 1012. Hence. the
updated contents of the PC at the time the branch target address is generated will be
1016. To branch to location LOOP (1000). the offset value needed is X = —16.

Assembly languages allow branch instructions to be written using labels to denote
the branch target as shown in Figure 2.12. When the assembler program processes such
an instruction, it computes the required offset value, —16 in this case. and generates
the corresponding machine instruction using the addressing mode —16(PC).

2.5.5 ADDITIONAL MODES

So far we have discussed the five basic addressing modes — Immediate. Register,
Absolute (Direct). Indirect. and Index — found in most computers. We have given a
number of common versions of the Index mode. not all of which may be found in any
one computer. Although these modes suffice for general computation. many computers

2.5 ADDRESSING MODES

provide additional modes intended to aid certain programming tasks. The two modes
described next are useful for accessing data items in successive locations in the memory.

Autoincrement mode — The effective address of the operand is the contents of a
register specified in the instruction. Alter accessing the operand. the contents of
this register are automatically incremented to point to the next item in & ll%t.%

We denote the Autoincrement mode by putting the specified register in purentheses.
to show that the contents of the register are used as the effective address. followed by
a plus sign to indicate that these contents are to be incremented after the operand is
accessed. Thus, the Autoincrement mode is written as
(Ri)+

Implicitly. the increment amount is 1 when the mode is given in this form. But in a byte
addressable memory. this mode would only be useful in accessing successive bytes
of some list. To access successive words in a byte-addressable memory with a 32-bit
word length, the increment must be 4. Computers that have the Autoincrement mode
automatically increment the contents of the register by a value that corresponds to the
size of the accessed ()puand Thus. the increment is | for byte-sized operands. 2 tor
16-bit operands. and 4 for 32-bit opemnds Since the size of the operand is usually
specified as part of the operation code of an instruction. it is sufficient to indicate the
Autoincrement mode as (Ri)-+

If the Autoincrement mode is available. it can be used in the first Add instruction in
Figure 2.12 and the second Add instruction can be eliminated. The modified program
is shown in Figure 2.16.

As a companion for the Autoincrement mode. another useful mode accesses the
items of a list in the reverse order:

Autodecrement mode — The contents of a register specified in the instruction are
first automatically decremented and are then used as the effective address of the
operand.

We denote the Autodecrement mode by putting the specified register in parentheses.

preceded by a minus sign to indicate that the contents of the register are o be decre-
mented before being used as the effective address. Thus. we write

—(Ri)
Move N.RI
Move #NUMI.R2 [nitialization
Clear RO
—— LOOP Add (R2)+.R0O
Decrement R1
Branch>0 1.OOP
Move RO.SUM

Figure 2.16 The Autoincrement addressing mode used in the program
of Figure 2.12.

57

58

CHAPTER 2 ¢ MNACHINE INSTRUCTIONS AND PROGRAMS

In this mode. operands are accessed in descending address order. The reader may
wonder why the address is decremented before it is used in the Autodecrement mode
and incremented after it is used in the Autoincrement mode. The main reason for this
Is given in Section 2.8, where we show how these two modes can be used together to
miplement an important data structure called a stack.

The actions performed by the Autoincrement and Autodecrement addressing modes
can obviously be achieved by using two instructions, one to access the operand and
the other to increment or decrement the register that contains the operand address.
Combining the two operations in one instruction reduces the number of instructions
needed to perform the desired task. However. we will show in Chapter & that it is not
always advantageous to combine two operations in a single instruction.

2.6 ASSEMBLY LANGUAGE

Machine instructions are represented by patterns of Os and ls. Such patterns are awk-
ward to deal with when discussing or preparing programs. Therefore. we use symbolic
names to represent the patterns. So far. we have used normal words. such as Move. Add.
Increment. and Branch. for the instruction operations to represent the corresponding
binary code patterns. When writing programs for a specific computer, such words are
normally replaced by acronyms called mnemonics, such as MOV, ADD. INC. and BR.
Stmilarly. we use the notation R3 to refer to register 3. and LOC to refer 1o a memory
location. A complete set of such symbolic names and rules for their use constitute
programming language. generally referred to as an assembly language, The set of rules
for using the mnemonics in the specification of complete instructions and programs is
called the synrax of the language.

© " Programs written in an assembly language can be automatically translated into a
sequence of machine instructions by a program called an assembler. The assembler
program is one of a collection of utility programs that are a part of the system software.
The assembler. like any other program. is stored as a sequence of machine instructions
in the memory of the computer. A user program is usually entered into the computer
through a keyboard and stored either in the memory or on a magnetic disk. At this
point. the user program is simply a set of lines of alphanumeric characters. When the
assembler program is executed. it reads the user program. analyzes it. and then gen-
erates the desired machine language program. The latter contains patterns of Os and
I's specitying instructions that will be executed by the computer. The user program in
its original alphanumeric text format is called a source program, and the assembled
machine language program is called an object program. We will discuss how the as-
sembler program works in Section 2.6.2. First. we present a few aspects of the assembly
language itself. -

The assembly language for a given computer may or may not be case sensitive,
thatis. it may or may not distinguish between capital and lower case letters, We will
use capital letters to denote all names and labels in our examples i order 1o improve
the readability of the text. For example. we will write a Move instruction as

MOVE R0O.SUM

2.6 ASSEMBLY LANGUAGE

The mnemonic MOVE represents the binary pattern. or OP code. for the operation
performed by the instruction. The assembler translates this mnemonic into the binary
OP code that the computer understands.

The OP-code mnemonic is followed by at least one blank space character. Then
the information that specifies the operands is given. In our example. the source operand
is in register RO. This information is followed by the specification of the destination
operand. separated from the source operand by a comma, with no intervening blanks.
The destination operand is in the memory location that has its binary address represented
by the name SUM.

Since there are several possible addressing modes for specifying operand locations,
the assembly language must indicate which mode is being used. For example. a nu-
merical value or a name used by itself, such as SUM in the preceding instruction. may
be used to denote the Absolute mode. The sharp sign usually denotes an immediate
operand. Thus. the instruction

ADD #5R3

adds the number 5 to the contents of register R3 and puts the result back into register
R3. The sharp sign is not the only way to denote the Immediate addressing mode.
In some assembly languages. the intended addressing mode is indicated in the OP-
code mnemonic. In this case. a given instruction has difterent OP-code mnemonics for
different addressing modes. Forexample. the previous Add instruction may be written as

ADDI 5.R3

The suffix T in the mnemonic ADDI states that the source operand is given in the
Immediate addressing mode.

Indirect addressing is usually specified by putting parentheses around the name
or symbol denoting the pointer to the operand. For example. if the number 5 is to be
placed in a memory location whose address is held in register R2. the desired action
can be specified as

MOVE #5.R2)
or perhaps

MOVEI 5.(R2)
)

S
. 2.6.1 ASSEMBLER DIRECTIVES

In addition to providing a mechanism for representing instructions in a program. the
assembly language allows the programmer to specify other information needed to
translate the source program into the object program. We have already mentioned that
we need to assign numerical values o any names used in a program. Suppose that
the name SUM is used to represent the value 200. This fact may be conveyed to the
assembler program through a statement such as

SUM EQU 200

60

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

This statement does not denote an instruction that will be executed when the object
program is run; in fact, it will not even appear in the object program. It simply informs
the assembler that the name SUM should be replaced by the value 200 wherever it
appears in the program. Such statements, called assembler directives (or commands),
are used by the assembler while it translates a source program into an object program.

To illustrate the use of assembly language further, let us reconsider the program
in Figure 2.12. In order to run this program on a computer, it is necessary to write its
source code in the required assembly language, specifying all the information needed
to generate the corresponding object program. Suppose that each instruction and each
data item occupies one word of memory. This is an oversimplification, but it helps keep
the example straightforward. Also assume that the memory is byte addressable and that
the word length is 32 bits. Suppose also that the object program is to be loaded in the
main memory as shown in Figure 2.17. The figure shows the memory addresses where

100 Move N.R1i
104 Move #NUMI.R2
108 Clear RO

LOOP 112 Add (R2).RO
116 Add #1.R2
120 Decrement R
124 Branch>0 [.OOP
128 Move RO.SUM
132

SUM 200

N 204 100

NUML 208

NUM2 212

NUMn 604

Figure 2.17 Memory arrangement for the
program in Figure 2.12.

2.6 ASSEMBLY LANGUAGE

the machine instructions and the required data items are to be found after the program
is loaded for execution. If the assembler is to produce an object program according to
this arrangement, it has to know

» How to interpret the names
» Where to place the instructions in the memory
» Where to place the data operands in the memory

To provide this information. the source program may be written as shown in Figure 2.18.
The program begins with assembler directives. We have already discussed the Equate
directive, EQU. which informs the assembler about the value of SUM. The second
assembler directive, ORIGIN, tells the assembler program where in the memory to
place the data block that follows. In this case. the location specified has the address
204. Since this location is to be loaded with the value 100 (which is the number of
entries in the list), a DATAWORD directive is used to inform the assembler of this
requirement. It states that the data value 100 is to be placed in the memory word at
address 204.

Any statement that results in instructions or data being placed in a memory location
may be given a memory address label. The label is assigned a value equal to the address

Menory Addressing
address or data
label Operation information
Asscmbler directives SUMN EQU 200
ORIGIN 204
N DATAWORD 100
NUAMI1 RESERVE 100
ORIGIN 100
Statcuents that START AOVE N.RI
generate AMOVE #NUMNIL.R2
machine C'LR RO
instrietions LOOP ADD (R2).R0O
ADD #1.R2
DEC Rl
BGTZ LOOP
MOVE RO.SUAI
Assembler directives RETURN
END START

Figure 2.18 Assembly language representation for the program in
Figure 2.17.

61

62

CHAPTER 2 -+ MNACHINE INSTRUCTIONS AND PROGRAMS

of that location. Because the DATAWORD statement is given the label N. the name N
i1s assigned the value 204. Whenever N is encountered in the rest of the program. it will
be replaced with this value. Using N as a label in this manner is equivalent to using the
assembler directive

N EQU 204

The RESERVE directive declares that a memory block of 400 bytes is to be reserved
for data. and that the name NUMI is to be associated with address 208. This directive
does not cause any data to be loaded in these locations. Data may be loaded in the
memory using an input procedure. as we will explain later in this chapter.

The second ORIGIN directive specifies that the instructions of the object program
are to be loaded in the memory starting at address 100. It is followed by the source
program instructions written with the appropriate mnemonics and syntax. The last state-
ment in the source program is the assembler directive END. which tells the assembler
that this is the end of the source program text. The END directive includes the label
START. which is the address of the location at which execution of the program is to
begin.

We have explained all statements in Figure 2.18 except RETURN. This is an
assembler directive that identifies the point at which execution of the program should
be terminated. It causes the assembler to insert an appropriate machine instruction that
returns control to the operating system of the computer,

Most assembly languages require statements in a source program to be written in
the form

Label Operation Operand(s) Comment

These four fields are separated by an appropriate delimiter, typically one or more blank
characters. The Label is an optional name associated with the memory address where
the machine language instruction produced from the statement will be loaded. Labels
may also be associated with addresses of data items. In Figure 2.18 there are five labels:
SUM. N. NUMI. START. and LOOP.

The Operation field contains the OP-code mnemonic of the desired instruction or
assembler directive. The Operand field contains addressing information for accessing
one or more operands. depending on the type of instruction. The Comment field is
ignored by the assembler program. It is used for documentation purposes to make the
program easier to understand.

We have introduced only the very basic characteristics of assembly languages.
These languages differ in detail and complexity {from one computer to another.

2.6.2 ASSEMBLY AND EXECUTION OF PROGRAMS

A source program written in an assembly language must be assembled into a machine
language object program before it can be executed. This is done by the assembler
program. which replaces all symbols denoting operations and addressing modes with
the binary codes used in machine instructions, and replaces all names and labels with
their actual values.

2.6 ASSEMBLY LANGUAGE

The assembler assigns addresses to instructions and data blocks, starting at the ad-
dress given in the ORIGIN assembler directives. It also inserts constants that may
be given in DATAWORD commands and reserves memory space as requested by
RESERVE commands.’

A key part of the assembly process is determining the values that replace the names.
In some cases, where the value of a name is specified by an EQU directive, this is a
straightforward task. In other cases, where a name is defined in the Label field of a
given instruction, the value represented by the name is determined by the location of
this instruction in the assembled object program. Hence. the assembler must keep track
of addresses as it generates the machine code for successive instructions. For example,
the names START and LOOP will be assigned the values 100 and 112, respectively.

In some cases, the assembler does not directly replace a name representing an
address with the actual value of this address. For example, in a branch instruction, the
name that specifies the location to which a branch is to be made (the branch target) is not
replaced by the actual address. A branch instruction is usually implemented in machine
code by specifying the branch target using the Relative addressing mode, as explained
in Section 2.5. The assembler computes the branch offset. which is the distance to the
target, and puts it into the machine instruction.

“As the assembler scans through a source program, it keeps track of all names and
the numerical values that correspond to them in a symbol table. Thus, when a name
appears a second time, it is replaced with its value from the table. A problem arises
when a name appears as an operand before it is given a value. For example. this happens
if a forward branch is required. The assembler will not be able to determine the branch
target, because the name referred to has not yet been recorded in the symbol table.
A simple solution to this problem is to have the assembler scan through the source
program twice. During the first pass, it creates a complete symbol table. At the end of
this pass. all names will have been assigned numerical values. The assembler then goes
through the source program a second time and substitutes values for all names from the
symbol table. Such an assembler is called a mo-pass assembler.

The assembler stores the object program on a magnetic disk. The object program
must be loaded into the memory of the computer before it is executed. For this to happen.
another utility program called a loader must already be in the memory. Executing the
loader performs a sequence of input operations needed to transfer the machine language
program from the disk into a specified place in the memory. The loader must know
the length of the program and the address in the memory where it will be stored. The
assembler usually places this information in a header preceding the object code. Having
loaded the object code, the loader starts execution of the object program by branching
to the first instruction to be executed. Recall that the address of this instruction has
been included in the assembly language program as the operand of the END assembler
directive. The assembler includes this address in the header that precedes the object
code on the disk.

~ When the object program begins executing, it proceeds to completion unless there
are logical errors in the program. The user must be able to find errors easily. The
assembler can detect and report syntax errors. To help the user find other programming
errors, the system software usually includes a debugger program. This program enables
the user to stop execution of the object program at some points of interest and to examine

63

64

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

the contents of various processor registers and memory locations. We consider program
debugging in more detail in Chapter 4.

2.6.3 NUMBER NOTATION

When dealing with numerical values, it is often convenient to use the familiar decimal
notation. Of course. these values are stored in the computer as binary numbers. In
some situations, it is more convenient to specify the binary patterns directly. Most
assemblers allow numerical values to be specified in different ways. using conventions
that are defined by the assembly language syntax. Consider. for example, the number
93. which is represented by the 8-bit binary number O1011101. If this value is to be
used as an immediate operand. it can be given as a decimal number, as in the instruction

ADD #93.RI
or as a binary number identified by a prefix symbol such as a percent sign. as in
ADD #%01011101.R1

Binary numbers can be written more compactly as hexadecimal, or hex, numbers, in
which four bits are represented by a single hex digit. The hex notation is a direct exten-
sion of the BCD code given in Appendix E. The first ten patterns 0000. 0001. 1001,

are represented by the digits 0. 1, 9, as in BCD. The remaining six 4-bit patterns.
1010. 1011, P11, are represented by the letters A.B. F. In hexadecimal repre-

sentation, the decimal value 93 becomes 5D. In assembly language, a hex representation
is often identified by a dollar sign prefix. Thus, we would write

ADD #$5D.RI

2.7 BASIC INPUT/OUTPUT OPERATIONS

Previous sections in this chapter described machine instructions and addressing modes.
We have assumed that the data on which these instructions operate are already stored
in the memory. We now examine the means by which data are transferred between the
memory of a computer and the outside world. Input/Output (1/0) operations are essen-
tial. and the way they are performed can have a significant effect on the performance
of the computer. This subject is discussed in detail in Chapter 4. Here. we introduce a
few basic ideas.”

Consider atask that reads in character input from a keyboard and produces character
outputon adisplay screen. A simple way of performing such I/O tasks is to use a method
known as program-controlled I/0. The rate of data transfer from the keyboard to a
computer is limited by the typing speed of the user. which is unlikely to exceed a few
characters per second. The rate of output transters from the computer to the display is
much higher. It is determined by the rate at which characters can be transmitted over the
link between the computer and the display device. typically several thousand characters
per second. However, this is still much slower than the speed of a processor that can

2.7 BASIC INPUT/OUTPUT OPERATIONS

Bus
Processor .
DATAIN DATAOUT
D SIN D SOuT
Keyboard Display

Figure 2.19 Bus connection for processor, keyboard, and display.

execute many millions of instructions per second. The difference in speed between the
processor and /0 devices creates the need for mechanisms to synchronize the transfer
of data between them. ..

A solution to this problem is as follows: On output. the processor sends the first
character and then waits for a signal from the display that the character has been
received. It then sends the second character, and so on. Input is sent from the keyboard
in a similar way: the processor waits for a signal indicating that a character key has
been struck and that its code is available in some buffer register associated with the
keyboard. Then the processor proceeds to read that code.

“The keyboard and the display are separate devices as shown in Figure 2.19. The
action of striking a key on the keyboard does not automatically cause the corresponding
character to be displayed on the screen. One block of instructions in the I/O program
transfers the character into the processor, and another associated block of instructions
causes the character to be displayed.

Consider the problem of moving a character code from the keyboard to the proces-
sor. Striking a key stores the corresponding character code in an 8-bit buffer register
associated with the keyboard. Let us call this register DATAIN. as shown in Figure 2.19.
To inform the processor that a valid character is in DATAIN. a status control flag. SIN,
is set to 1. A program monitors SIN. and when SIN is set to 1. the processor reads
the contents of DATAIN. When the character is transferred to the processor. SIN is
automatically cleared to 0. If a second character is entered at the keyboard. SIN is again
set to | and the process repeats. |

'An analogous process takes place when characters are transferred from the proces-
sor to the display. A buffer register. DATAOUT. and a status control flag. SOUT. are used
for this transter. When SOUT equals 1. the display is ready to receive a character, Under
program control. the processor monitors SOUT. and when SOUT is set to 1. the proces-
sor transfers a character code to DATAOUT. The transfer of a character to DATAOUT
clears SOUT to 0: when the display device is ready to receive a second character, SOUT
is again set to 1. The buffer registers DATAIN and DATAOUT and the status flags SIN

65

66

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

and SOUT are part of circuitry commonly known as a device interface. The circuitry
for each device is connected to the processor via a bus, as indicated in Figure 2.19.

. In order to perform I/O transfers, we need machine instructions that can check the
state of the status flags and transfer data between the processor and the I/0O device. These
instructions are similar in format to those used for moving data between the processor
and the memory. For example, the processor can monitor the keyboard status flag SIN
and transfer a character from DATAIN to register R1 by the following sequence of
operations:

READWAIT Branch to READWAIT if SIN = 0
Input from DATAIN to R1

The Branch operation is usually implemented by two machine instructions. The first
instruction tests the status flag and the second performs the branch. Although the details
vary from computer to computer, the main idea is that t the processor monitors the status
flag by executing a short wait loop and proceeds to transfer the input data when SIN is
set to 1 as a result of a key being struck. The Input operation resets SIN to 0.

An analogous sequence of operations is used for transferring output to the display.
An example is

WRITEWAIT Branch to WRITEWAIT if SOUT = 0
Output from R1 to DATAOUT

Again, the Branch operation is normally implemented by two machine instructions. The
wait loop is executed repeatedly until the status flag SOUT is set to | by the display
when it is free to receive a character. The Output operation transfers a character from
R1 to DATAOUT to be displayed, and it clears SOUT to 0.

We assume that the initial state of SIN is 0 and the initial state of SOUT is 1. This
initialization is normally performed by the device control circuits when the devices are
placed under computer control before program execution begins.

Until now, we have assumed that the addresses issued by the processor to access
instructions and operands always refer to memory locations. Many computers use an
arrangement called memory-mapped 1/0 in which some memory address values are
used to refer to peripheral device buffer registers, such as DATAIN and DATAOUT.
Thus, no special instructions are needed to access the contents of these registers; data
can be transferred between these registers and the processor using instructions that we
have already discussed, such as Move, Load, or Store. For example, the contents of the
keyboard character buffer DATAIN can be transferred to register R1 in the processor
by the instruction

MoveBvte DATAIN,RI
Similarly, the contents of register R1 can be transferred to DATAOUT by the instruction
MoveByte RI1,DATAOUT

The status flags SIN and SOUT are automatically cleared when the buffer registers
DATAIN and DATAOUT are referenced, respectively. The MoveByte operation code
signifies that the operand size is a byte, to distinguish it from the operation code

2.7 BASIC INPUT/OUTPUT OPERATIONS

Move that has been used for word operands. We have established that the two data
buffers in Figure 2.19 may be addressed as if they were two memory locations. It is
possible to deal with the status flags SIN and SOUT in the same way. by assigning them
distinet addresses. However. it is more common to include SIN and SOUT in device
status registers. one for each of the two devices. Let us assume that bit b3 in registers
INSTATUS and OUTSTATUS corresponds to SIN and SOUT. respectively. The read
operation just described may now be implemented by the machine instruction sequence

f 'READWAIT Testbit #3 INSTATUS
Branch=0 READWAIT
MoveByte DATAIN.RI

The write operation may be implemented as

WRITEWAIT Testbit #3.OUTSTATUS
Branch=0 WRITEWAIT
MoveByte RI.DATAOUT

The Testbit instruction tests the state of one bit in the destination location. where the bit
position to be tested is indicated by the first operand. It the bit tested is equal to 0. then
the condition of the branch instruction is true, and a branch is made to the beginning
of the wait loop. When the device is ready. that is, when the bit tested becomes equal
to 1. the data are read from the input buffer or written into the output buffer.

The program shown in Figure 2.20 uses these two operations to read a line of
characters typed at a keyboard and send them out to a display device. As the characters
are read in, one by one. they are stored in a data area in the memory and then echoed

Move #LOC.RO Luitialize pointer register RO to point to the
address of the first location i memory

where the characters are to be stored.
READ TestBit #3.INSTATUS Wait for a character to be entered
Branch=0 READ in the kevboard huffer DATAIN.

MoveByte DATAIN(RO) Transfer the chiaracter from DATAIN into

the memory (this clears SIN to 0).
ECHO TestBit #3. OUTSTATUS Wair for the display to become ready.
Branch=0 ECHO

MoveByte (RO).DATAOUT Nove the character just read to the display
buffer register (this clears SOUT to 0).

Compare #CRARO)+ Check if the character just read is CR

(carriage return). I it is not CRL then
Branch#0 READ branch back and read another character.
Also. increment the pointer to store the

next character.

Figure 2.20 A program that reads a line of characters and displays it.

68

CHAPTER 2 -+ MACHINE INSTRUCTIONS AND PROGRAMS

back out to the display. The program finishes when the carriage return character. CR. is
read, stored. and sent to the display. The address of the first byte location of the memory
data area where the line is to be stored is LOC. Register RO is used to point to this area,
and it is initially loaded with the address LOC by the first instruction in the program. R0
is incremented for each character read and displayed by the Autoincrement addressing
mode used in the Compare instruction.

Program-controlied 1/0 requires continuous involvement of the processor in the I/O
activities. Almost all of the execution time for the program in Figure 2.20 is accounted
for in the two wait loops, while the processor waits for a character to be struck or for
the display to become available. It is desirable to avoid wasting processor execution
time in this situation. Other I/O techniques, based on the use of interrupts. may be
used to improve the utilization of the processor. Such techniques will be discussed in
Chapter 4.

2.8 STACKS AND QUEUES

A computer program often needs to perform a particular subtask using the familiar
subroutine structure. In order to organize the control and information linkage be-
tween the main program and the subroutine. a data structure called a stack is used.
This section will describe stacks. as well as a closely related data structure called a
queue. ./

Data operated on by a program can be organized in a variety of ways. We have
already encountered data structured as lists. Now, we consider an important data struc-
ture known as a stack. A stack is a list of data elements, usually words or bytes. with
the accessing restriction that elements can be added or removed at one end of the list
only. This end is called the top of the stack. and the other end is called the bottom.
The structure is sometimes referred to as a pushdown stack. Imagine a pile of trays in
a cafeteria: customers pick up new trays from the top of the pile. and clean trays are
added to the pile by placing them onto the top of the pile. Another descriptive phrase.
last-in—first-out (LIFO) stack. is also used to describe this type of storage mechanism:
the last data item placed on the stack is the first one removed when retrieval begins. The
terms push and pop are used to describe placing a new item on the stack and removing
the top item from the stack. respectively.

Data stored in the memory of a computer can be organized as a stack. with succes-
sive elements occupying successive memory locations. Assume that the first element is
placed in location BOTTOM. and when new elements are pushed onto the stack. they
are placed in successively lower address locations. We use a stack that grows in the
direction of decreasing memory addresses in our discussion. because this is a common
practicg.

Figure 2.21 shows a stack of word data items in the memory of a computer. It
contains numerical values, with 43 at the bottom and —28 at the top. A processor
register is used to keep track of the address of the element of the stack that is at the
top at any given time. This register is called the stack pointer (SP). It could be one of
the general-purpose registers or a register dedicated to this function. If we assume a

2.8 STACKS AND QUEUES

0
Stack
pointer
register ‘1
op g - Current
- - top element
17
739
Stack
Bottom
BOTTOM 43 7 element
2ty

Figure 2.21 A stack of words in the memory.

byte-addressable memory with a 32-bit word length. the push operation can be imple-
mented as

Subtract #4.SP
Move NEWITEM.(SP)

where the Subtract instruction subtracts the source operand 4 from the destination
operand contained in SP and places the result in SP. These two instructions move the
word from location NEWITEM onto the top of the stack. decrementing the stack pointer
by 4 before the move. The pop operation can be implemented as

Move (SP).ITEM
Add #4.SP

These two instructions move the top value from the stack into location ITEM and then
increment the stack pointer by 4 so that it points to the new top element. Figure 2.22
shows the effect of each of these operations on the stack in Figure 2.21.

If the processor has the Autoincrement and Autodecrement addressing modes, then
the push operation can be performed by the single instruction

Move NEWITEM.—(SP)

69

70

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

Sp - 19

-8 -28

17 SP = 17

739 739

r Stack
43 43
NEWITEM 19 ITEM =28
(a) After push from NEWITEM (b) After pop into ITEM

Figure 2.22 Effect of stack operations on the stack in Figure 2.21.

and the pop operation can be performed by
Move (SP)+.TEM

When a stack is used in a program. it is usually allocated a fixed amount of space
in the memory. In this case. we must avoid pushing an item onto the stack when the
stack has reached its maximum size. Also, we must avoid attempting to pop an item
off an empty stack. which could result from a programming error. Suppose that a stack
runs from location 2000 (BOTTOM) down no further than location 1500. The stack
pointer is loaded initially with the address value 2004. Recall that SP is decremented by
4 before new data are stored on the stack. Hence, an initial value of 2004 means that the
first item pushed onto the stack will be at location 2000. To prevent either pushing an
item on a full stack or popping an item off an empty stack. the single-instruction push
and pop operations can be replaced by the instruction sequences shown in Figure 2.23.

The Compare instruction

Compare src.dst
performs the operation
[dst] — [src)

and sets the condition code flags according to the result. It does not change the value
of either operand.

2.8 STACKS AND QUEUES 71

SAFEPODP Compare #2000.51 Check to see if the stack pointer contains
Branch>0 EMPTYERROR an address value greater than 2000, If it
does. the stack is empty. Branch to the
routine ENIPTYERROR for appropriate
action.
NMove (SP)—TTEN Otherwise. pop the top of the stack into
memory location ITEM.

(a) Routine for a safe pop operation

SAFEPUSH Compare #1500.5P Check to see if the stack pointer
Branch<t FULLERROR contains an address valne equal’
to or less than 1500, I it does. the
stack is full. Branch to the routine
FULLERROR for appropriate action.
Move NEWITEAN. -(SP) Otherwise. push the element in memory
location NEWTTEN onto the stack.

(b) Routine for a safe push operation

Figure 2.23 Checking for empty and full errors in pop and push operations.

Another useful data structure that is similar to the stack is called a gurewe. Data are
stored in and retrieved from a queue on a first-in—first-out (FIFO) basis. Thus, if we
assume that the queue grows in the direction of increasing addresses in the memory.
which is a common practice, new data are added at the back (high-address end) and
retrieved from the front (low-address end) of the queue.

There are two important differences between how a stack and a queue are imple-
mented. One end of the stack is fixed (the bottom). while the other end rises and falls as
data are pushed and popped. A single pointer is needed to point to the top of the stack
at any given time. On the other hand. both ends of a queue move to higher addresses
as data are added at the back and removed from the front. So two pointers are needed
to keep track of the two ends of the queue.

Another difference between a stack and a queue is that. without further control,
a queue would continuously move through the memory of a computer in the direc-
tion of higher addresses. One way to limit the queue to a fixed region in memory is
to use a circular buffer. Let us assume that memory addresses from BEGINNING to
END are assigned to the queue. The first entry in the queue is entered into location

72

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

BEGINNING., and successive entries are appended to the queue by entering them at
successively higher addresses. By the time the back of the queue reaches END. space
will have been created at the beginning if some items have been removed from the
queue. Hence. the back pointer is reset to the value BEGINNING and the process con-
tinues. As in the case of a stack. care must be taken to detect when the region assigned
to the data structure is either completely full or completely empty (see Problems 2.18
and 2.19).

;o

2.9 SUBROUTINES

In a given program, it is often necessary to perform a particular subtask many times
on different data values. Such a subtask is usually called a subroutine. For example.
a subroutine may evaluate the sine function or sort a list of values into increasing or
decreasing order.

Itis possible to include the block of instructions that constitute a subroutine at every
place where it is needed in the program. However. to save space. only one copy of the
instructions that constitute the subroutine is placed in the memory. and any program
that requires the use of the subroutine simply branches to its starting location. When a
program branches to a subroutine we say thatitis calling the subroutine. The instruction
that performs this branch operation is named a Call instruction.

After a subroutine has been executed. the calling program must resume execution.
continuing immediately after the instruction that called the subroutine. The subroutine
is said to return to the program that called it by executing a Return instruction. Since
the subroutine may be called from different places in a calling program. provision
must be made for returning to the appropriate location. The location where the calling
program resumes execution is the location pointed to by the updated PC while the Call
instruction is being executed. Hence. the contents of the PC must be saved by the Call
instruction to enable correct return to the calling program.

«The way in which a computer makes it possible to call and return from subroutines
is referred to as its subroutine /in_kz)/ge n1c(h0d:,fThe simplest subroutine linkage method
is to save the returfraddress in a specific location, which may be a register dedicated to
this function. Such a 1'egister is called the link register. When the subroutine completes
its task, the Return instruction returns to the calling program by branching indirectly
through the link register.

The Call instruction is just a special branch instruction that performs the following
operations:

* Store the contents of the PC in the link register
* Branch to the target address specitied by the instruction

The Return instruction is a special branch instruction that performs the operation:
* Branch to the address contained in the link register

Figure 2.24 illustrates this procedure.

2.9 SUBROUTINES

Memory Memory .
location Calling program location Subroutine SUB
200 Call SUB _— 1000 first instruction
204 next instruction -y
Return
1000
pPC 204 |
Link 204
Call Return

Figure 2.24 Subroutine linkage using a link register. , _—"

2.9.1 SUBROUTINE NESTING AND THE PROCESSOR STACK

A common programming practice, called subroutine nesting, is 1o have one subroutine
call another. In this case. the return address of the second call is also stored in the link

register. destroying its previous contents. Hence. it is essential to save the contents of

the link register in some other location before calling another subroutine. Otherwise.
the return address of the first subroutine will be lost.

Subroutine nesting can be carried out to any depth. Eventually. the last subroutine
called completes its computations and returns to the subroutine that called it. The return
address needed for this first return is the last one generated in the nested call sequence.
That is. return addresses are generated and used in a last-in—first-out order. This suggests
that the return addresses associated with subroutine calls should be pushed onto a stack.
Many processors do this automatically as one of the operations performed by the Call
instruction. A particular register is designated as the stack pointer. SP. to be used in
this operation. The stack pointer points to a stack called the processor stack. The
Call instruction pushes the contents of the PC onto the processor stack and loads the
subroutine address into the PC. The Return instruction pops the return address from
the processor stack into the PC.

73

74

CHAPTER 2 ¢ DMACHINE INSTRUCTIONS AND PROGRAMS

2.9.2 PARAMETER PASSING

-When calling a subroutine, a program must provide to the subroutine the parameters. that
is. the operands or their addresses. to be used in the computation. Later. the subroutine
returns other parameters. in this case. the results of the computation. This exchange
of information between a calling program and a subroutine is referred to as parameter
passing.-Parameter passing may be accomplished in several ways. The parameters
may be placed in registers or in memory locations. where they can be accessed by the
subroutine. Alternatively. the parameters may be placed on the processor stack used for
saving the return uddrcszz(l

Passing parameters~through processor registers is straightforward and efticient.
Figure 2.25 shows how the program in Figure 2.16 for adding a list of numbers can he
implemented as a subroutine. with the parameters passed through registers. The size of
the list. n. contained in memory location N. and the address. NUMI. of the first number.
are passed through registers R1 and R2. The sum computed by the subroutine is passed
back to the calling program through register R0. The first four instructions in Figure 2.25
constitute the relevant part of the calling program. The first two instructions load n and
NUMI into R1 and R2. The Call instruction branches to the subroutine starting at
location LISTADD. This instruction also pushes the return address onto the processor
stack. The subroutine computes the sum and places it in RO. After the return operation
is performed by the subroutine, the sum is stored in memory location SUM by the
calling program.

Calling program

NMove N.R1 R1 serves as a counter.
Move #NUNMILR2 R2 points to the list.
Call LISTADD Call subroutine.
NMove RO.SUNI Save result.
Subroutine
LISTADD Clear RO Initialize swm to O,
LOODP Add (R2)+.R0O Add entry from list.

Decrement Rl
Branch>0 LOODP
Retwn Return to ealling program.

Figure 2.25 Program of Figure 2.16 written as a subroutine; parameters
passed through registars.

2.9 SUBROUTINES

If many parameters are involved. there may not be enough general-purpose registers
available for passing them to the subroutine. Using a stack. on the other hand. is highly
flexible: a stack can handle a large number of parameters. The following example
tlustrates this approach. Figure 2.26«a shows the program of Figure 2.16 rewritten as
a subroutine, LISTADD. which can be called by any other program to add a list of
numbers. The parameters passed to this subroutine are the address of the first number
in the list and the number of entries. The subroutine performs the addition and returns
the computed sum. The parameters are pushed onto the processor stack pointed to by
register SP. Assume that before the subroutine is called. the top of the stack is at level
I in Figure 2.265h. The calling program pushes the address NUM1 and the value 1 onto
the stack and calls subroutine LISTADD. The Call instruction also pushes the return
address onto the stack. The top of the stack is now at level 2.

The subroutine uses three registers. Since these registers may contain valid data
that belong 1o the calling program. their contents should be saved by pushing them
onto the stack. We have used a single instruction. MoveMultiple. to store the contents
of registers RO through R2 on the stack. Many processors have such instructions. The
top of the stack is now at level 3. The subroutine accesses the parameters 17 and NUM
from the stack using indexed addressing. Note that it does not change the stack pointer
because valid data items are still at the top of the stack. The value 11 is loaded into R1 as
the initial value of the count. and the address NUMI is loaded into R2. which is used
as a pointer to scan the list entries. At the end of the computation. register RO contains
the sum. Before the subroutine returns to the calling program. the contents of R0 are
placed on the stack. replacing the parameter NUMI. which is no longer needed. Then
the contents of the three registers used by the subroutine are restored from the stack.
Now the top item on the stack is the return address at level 2. After the subroutine
returns, the calling program stores the result in location SUM and lowers the top of the
stack to its original level by incrementing the SP by &.

Parameter Passing by Value and by Reference

Note the nature of the two parameters. NUMI and n. passed to the subroutines
in Figures 2.25 and 2.26. The purpose of the subroutines is to add a list of numbers.
Instead of passing the actual list entries. the calling program passes the address of
the first number in the list. This technique is called passing by reference. The second
parameter is passed by value, that is. the actual number of entries. 11, is passed to the
subroutine.

2.9.3 THE STACK FRAME

Now. observe how space is used in the stack in the example in Figure 2.26. During
exccution of the subroutine. six locations at the top of the stack contain entries that
are needed by the subroutine. These locations constitute a private work space for the
subroutine. created at the time the subroutine is entered and freed up when the subrou-
tine returns control to the calling program. Such space is called a stack frame. 1f the
subroutine requires more space for local memory variables. they can also be allocated
on the stack.

75

76 CHAPTER 2 -

MACHINE INSTRUCTIONS AND PROGRAMS

Asswune top of stack is at level 1 below.

LISTADD

LOOP

Nove
Nove
Call

Nove
Add

AMoveNultiple

Maove

Move

Clear

Add
Decrement
Branch>0
Move
MoveMultiple
Return

#NUNMI1.—(SP)
N.—:SP)
LISTADD

1(ST").SUMI
#8.5D

RO-R2.—(5P)

16(SP).R1
20(SP).R2
RO

(R2)+.R0

R1

LOOD
R0.20(SP)
(SP)+.RO-R2

Push parameters onto stack.

Call subroutine

(top of stack at level 2).
Save result.
Restore top of stack

(top of stack at level 1).

Save registers

(top of stack at level 3).
Initialize counter to n.
Initialize pointer to the list.
Initialize sum to 0.
Add entry from list.

Put result on the stack.
Restore registers.
Return to calling prograu.

(a) Calling program and subroutine

Level 3

Loevel 2

Level 1

— 2]
[R1]
[RO]
— | Return address
n
NUMI1

(b) Top of stack at various times

Figure 2.26 Program of Figure 2.16 written as a subroutine; parameters passed
on the stack.

2.9 SUBROUTINES

SP

i saved [R1
(stack pointer} saved [R1]

saved RO

localvar3

localvar2

localvarl Stack
frame
FP ;
S, saved [FP] for
(frame pointer) called
subroutine

Return address

paraml

param?2

param3

param+4

-—— Old TOS

Figure 2.27 A subroutine stack frame example.

Figure 2.27 shows an example of a commonly used layout for information in a
stack frame. In addition to the stack pointer SP. it is useful to have another pointer
register, called the frame pointer (FP). for convenient access to the parameters passed
to the subroutine and to the local memory variables used by the subroutine. These local
variables arc only used within the subroutine. o it is appropriate to allocate space for
them in the stack frame associated with the subroutine. In the figure, we assume that
four parameters are passed to the subroutine, three local variables are used within the
subroutine, and registers RO and R need to be saved because they will also be used
within the subroutine.

With the FP register pointing to the Jocation just above the stored return address.
as shown in Figure 2.27. we can easily access the parameters and the local variables by
using the Index addressing mode. The parameters can be accessed by using addresses

S(FP), 12(FP). The local variables can be accessed by using addresses —4(FP).
—-8(FP)..... The contents of FP remain fixed throughout the execution of the subroutine,

unlike the stack pointer SP. which must always point to the current top element in the
stack.

Now let us discuss how the pointers SP and FP are manipulated as the stack frame
is built, used, and dismantled for a particular invocation of the subroutine. We begin by

77

78

CHAPTER 2 + DNIACHINE INSTRUCTIONS AND PROGRAMS

assuming that SP points to the old top-of-stack (TOS) element in Figure 2.27. Before
the subroutine is called. the calling program pushes the four parameters onto the stack.
The Call instruction is then executed. resulting in the return address being pushed
onto the stack. Now. SP points to this return address. and the first instruction of the
subroutine is about 1o be executed. This is the point at which the frame pointer FP is sct
to contain the proper memory address. Since FP is usually a general-purpose register. it
may contain information of use to the calling program. Therefore. its contents are saved
by pushing them onto the stack. Since the SP now points 1o this position. its contents
are copied into FP.
Thus. the first two instructions executed in the subroutine are
Move FP.—(SP)
Move SP.FP

After these instructions are executed. both SP and FP point to the saved FP contents.
Space for the three local variables is now allocated on the stack by executing the
instruction

Subtract #12.SP

Finally. the contents of processor registers RO and R1 are saved by pushing them onto
the stack. At this point. the stack frame has been set up as shown in the figure.

The subroutine now executes its task. When the task is completed. the subroutine
pops the saved values of R1 and RO back into those registers. removes the local variables
from the stack frame by executing the instruction

Add #12.SP

and pops the saved old value of FP back into FP. At this point. SP points to the return
address. so the Return instruction can be executed. transferring control back to the
calling program.

The calling program is responsible for removing the parameters from the stack
frame. some of which may be results passed back by the subroutine. The stack pointer
now points to the old TOS. and we are back to where we started.

Stack Frames for Nested Subroutines

The stack is the proper data structure for holding return addresses when subroutines
are nested. It should be clear that the complete stack frames for nested subroutines build
up on the processor stack as they are called. In this regard. note that the saved contents
of FP in the current frame at the top of the stack are the frame pointer contents for the
stack frame of the subroutine that called the current subroutine.

An example of a main program calling a first subroutine SUB 1. which then calls a
second subroutine SUB2. is shown in Figure 2.28. The stack frames corresponding to
these two nested subroutines are shown in Figure 2.29. All parameters involved in this
cxample are passed on the stack. The figure only shows the flow of control and data
among the three programs. The actual computations are not shown,

The flow of execution is as follows. The main program pushes the two parameters
param?2 and param | onto the stack in that order and then calls SUB 1. This first subroutine
iIs responsible for computing a single answer and passing it back to the main program
on the stack. During the course of its computations. SUB calls the second subroutine.

2.9 SUBROUTINES

Memory
location Instructions

Commnient s

Main program

2000 NMove PATRAN2.—-SP)

20001 NMove PATYANIL. -:SP)
2008 Call SULE

2012 Move (SPI.RESULT
2016 Add #R 5P

20320 next struction

First subroutine

2100 SUBIT NMove FI°. - (SP)

2104 AMove SPEDP

2108 MoveMultiple RO-R3.—(SP)

2012 Nove REFP)RO
Aove [2(F”).R1
Nove PARANS.—(SD)

2160 Call SUB2

2161 Nove (SPy+ R2
Nove R3=(FP)
MoveNultiple (SP)+.RO-1R3
Nove (SPy-.FpP

Return

Sccond subroutine

3000 SUB2 - ANMove FP.—(SP)
Move SPP
MoveNultiple RO--R1.—(SP)
Move SEP).RO
NMove R1.X(FD)
MoveMultiple (SP}+.RO-RR1
Move (SP)+.FP

Return

Plice parameters on stack.

Store result.
Restore stack level.

Save frame pointer register.
Load the frame pointer.
Save registers.

Get first parameter.,

Get second parameter.

Place a paraineter on stack.

Pop SUB2 result into R2.

Place answer on stack.

Restore registers.

Restore frame pointer register.

Retwrn to Main progran.

Save frame pointer register.
Load the frame pointer.
Save registers RO and R1.
Get the parameter.

Place SUB2 result on stack.
Restore registers RO and R1.

Restore {rame pointer register.

Return to Subroutine 1.

Figure 2.28 Nested subroutines.

79

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

[R1} trom SUBI

[RO] trom SUBHI Stack
frame
Fp — [FP] from SUBI > for
second
2164 subroutine
param3

[R3] from Main

|R2] from Main

[R1] from Main

Stack
[RO} trom Main frame
> tor
FP— [FP] from Main first
subroutine

2012

param|

param?2

- Old TOS

Figure 2.29 Stack frames for Figure 2.28.

SUB2. in order to perform some subtask. SUBI passes a single parameter param3 to
SUB2 and gets a result passed back to it. After SUB2 executes its Return instruction.,
this result is stored in register R2 by SUB1. SUBI then continues its computations and
eventually passes the required answer back to the main program on the stack. When
SUBI executes its return to the main program. the main program stores this answer in
memory location RESULT and continues with its computations at “next instruction.”

The comments in Figure 2.28 provide the details of how this flow of execution is
managed. The first actions performed by each subroutine are to set the frame pointer.
after saving its previous contents on the stack. and to save any other registers required.
SUBI uses four registers, RO to R3. and SUB2 uses two registers. RO and R1. These
registers and the frame pointer are restored just before the returns are executed.

The Index addressing mode involving the frame pointer register FP is used to
toad parameters from the stack and place answers back on the stack. The byte offsets
used in these operations are always 8. 12... .. as discussed for the general stack frame
in Figure 2.27. Finally. note that the calling routines are responsibie for removing
parameters from the stack. This is done by the Add instruction in the main program,
and by the Move instruction at location 2164 in SUBI.

2.10 ADDITIONAL INSTRUCTIONS
2.10 ADDITIONAL INSTRUCTIONS

So far, we have introduced the following instructions: Move. Load. Store. Clear, Add.
Subtract. Increment. Decrement. Branch. Testhit. Compare. Call. and Return. These
13 instructions. along with the addressing modes in Table 2.1, have allowed us to
write routines to illustrate machine instruction sequencing. including branching and
the subroutine structure. We also illustrated the basic memory-mapped 1/0 operations.

Even this small set of instructions has a number of redundancies. The Load and
Store instructions can be replaced by Move. and the Increment and Decrement instruc-
tions can be replaced by Add and Subtract. respectively. Also. Clear can be replaced
by a Move instruction containing an immediate operand of zero. Therefore. only 8
instructions would have been sufficient for our purposes. But. it is not unusual to have
some redundancy in practical machine instruction sets. Certain simple operations can
usually be accomplished in a number of different ways. Some alternatives may be more
efficient than others. In this section we introduce a few more important instructions that
are found in most instruction sets.

2.10.1 LOGIC INSTRUCTIONS

Logic operations such as AND. OR. and NOT. applied to individual bits, are the basic
building blocks of digital circuits. as described in Appendix A. It is also usetul to be
able to perform logic operations in software. which is done using instructions that apply
these operations to all bits of a word or byte independently and in parallel. For example.
the instruction

Not dst

complements all bits contained in the destination operand. changing Os to Is. and Is to
(s. In Section 2.1.1, we saw that adding 1 to the ['s-complement of a signed positive
number forms the negative version in 2's-complement representation. For example. in

Figure 2.1, +3 (0011) is converted to —3 (1101) by adding | to the I's-complement of

0011, 1f 3 is contained in register RO. the instructions

Not RO
Add #1.RO

achieve the conversion. Many computers have a single instruction
Negate RO

that accomplishes the same thing.

Now consider an application for the logic instruction And. which pertorms the bit-
wise AND operation on the source and destination operands. Suppose that four ASCII
characters are contained in the 32-bit register RO. In some task. we wish to determine
if the leftmost character is Z. If it is, a conditional branch to YES is to be made. From
Appendix E, we find that the ASCII code for Z is 01011010, which is expressed in

81

82

CHAPTER 2 ¢ NACHINE INSTRUCTIONS AND PROGRAMS

hexadecimal notation as SA. The threc-instruction sequence

And #SFFO00000.RO
Compure #3$5A000000.R0O
Branch=0 YES

implements the desired action. The And instruction clears all bits in the rightmost three
character positions of RO to zero. leaving the leftmost character unchanged. This is the
result of using an immediate source operand that has eight Is at its left end. and Os
in the 24 bits to the right. The Compare instruction compares the remaining character
at the left end of RO with the binary representation for the character Z. The Branch
instruction causes a branch to YES if there is a match.

The And instruction is often used i practical programming tasks where all bits of
an operand except for some specified field are 1o be cleared to 0. In our example, the
leftmost eight bits of RO constitute the specified field.

2.10.2 SHIFT AND ROTATE INSTRUCTIONS

There are many applications that require the bits of an operand to be shifted right or
left some specified number of bit positions. The details of how the shifts are performed
depend on whether the operand is a signed number or some more general binary-coded
information. For general operands, we use a logical shift. For a number. we use an
arithmetic shift. which preserves the sign of the number,

Logical Shifts

Two logical shiftinstructions are needed. one for shifting left (L.ShiftL) and another
for shifting right (L.ShiftR). These instructions shift an operand over a number of hit
positions specitied in a count operand contained in the instruction. The general form
of a logical left shift instruction is

LShiftl. count.dst

The count operand may be given as an immediate operand. or it may be contained in
a processor register. To complete the description of the left shitt operation, we need to
specity the bit values brought into the vacated positions at the right end of the destination
operand, and to determine what happens to the bits shifted out of the left end. Vacated
positions are filled with zeros. and the bits shifted out are passed through the Carry flag.
C. and then dropped. Involving the C flag in shifts is useful in performing arithmetic
operations on large numbers that occupy more than one word. Figure 2.30a shows an
example of shifting the contents of register RO left by two bit positions. The logical
shift right instruction. LShiftR. works in the same manner except that it shifts to the
right. Figure 2.30/ illustrates this operation.

Digit-Packing Example

Consider the following short task that illustrates the use of both shift operations and
logic operations. Suppose that two decimal digits represented in ASCII code are located

2.10 ADDITIONAL INSTRUCTIONS

RO 0

bct‘urc; o v 1 10 - -0 11|
;n‘lcr:m rl L0 - - - 0 1 10 u

(a) Logical shift left LShiftL #2,RO

0 —] RO J—»

before: [() Cr L0 - - -0 ﬂ
after: |<> O 0 1 1L 1 0 - . . ()l D

(b) Logical shift right LShiftR #2.R0

Ll RO |—>

(c) Arithmetic shift right AShiftR #2,R0

Figure 2.30 Logical and arithmetic shift instructions.

in memory at byte locations LOC and LOC + 1. We wish to represent cach of these
digits in the 4-bit BCD code and store both of them in a single byte location PACKED.
The result is said o be in packed-BCD format. Tables E.1 and E.2 in Appendix E show
that the rightmost four bits of the ASCII code for a decimal digit correspond to the
BCD code for the digit. Hence. the required task is to extract the low-order four bits in
LOC and LOC + 1 and concatenate them into the single byte at PACKED.

The instruction sequence shown in Figure 2.31 accomplishes the task using register
RO as a pointer to the ASCIH characters in memory, and using registers Rl and R2 to

83

84

CHAPTER 2 « DMACHINE INSTRUCTIONS AND PROGRAMS

Move #LOC.RO RO polnts to data.
AMoveByte (RO)+.R1 Load first byvte into R1.
LShifrL #1R1 Shift left by 4 bit positions.
MoveByvte (RO).R2 Load second hyte into R2.
And #SEF . R2 Eliminate high-order bits.
Or R1.R2 Concatenate the BCD digits.

MoveBste R2PACKED Store the result.

Figure 2.31 A routine that packs two BCD digits.

develop the BCD digit codes. When a MoveByte instruction transfers a byte between
memory and a 32-bit processor register. we assume that the byte is located in the
rightmost eight bit positions of the register. The And instruction is used to mask out
all but the four rightmost bits in R2. Note that the immediate source operand is written
as SF. which, interpreted as a 32-bit pattern. has 28 zeros in the most-significant bit
positions.

Arithmetic Shifts

A study of the 2's-complement birary number representation in Figure 2.1 reveals
that shifting a number one bit position to the. left is equivalent to multiplying it by
2 and shifting it to the right is equivalent to dividing it by 2. Of course. overflow
might occur on shifting left. and the remainder is lost in shifting right. Another im-
portant observation is that on a right shift the sign bit must be repeated as the fill-in
bit for the vacated position. This requirement on right shifting distinguishes arith-
metic shifts from logical shifts in which the fill-in bit is always 0. Otherwise, the two
types of shifts are very similar. An example of an arithmetic right shift. AShifiR. is
shown in Figure 2.30c. The arithmetic left shift is exactly the same as the logical left
shift.

Rotate Operations

In the shift operations. the bits shified out of the operand are lost, except for the
last bit shifted out which is retained in the Carry flag C. To preserve all bits. a set
of rotate instructions can be used. They move the bits that are shifted out of one end
of the operand back into the other end. Two versions of both the left and right rotate
instructions are usually provided. In one version. the bits of the operand are simply
rotated. In the other version. the rotation includes the C flag. Figure 2.32 shows the lefi
and right rotate operations with and without the C flag being included in the rotation.
Note that when the C flag is not included in the rotation. it still retains the last bit
shifted out of the end of the register. The mnemonics RotateL. Rotatel.C. RotateR.
and RotateRC. denote the instructions that perform the rotate operations. The main use
for Rotate instructions is in algorithms for performing arithmetic operations other than
addition and subtraction, which we will encounter in Chapter 6.

2.10 ADDITIONAL INSTRUCTIONS

<—'>—r RO

betore:

after: l]

(a) Rotate left without carry

RotateL #2 R0

L——r RO

before:

|(>11|0

after: E__I |1 L0 - - - 0

(b) Rotate left with carry

RotateLC #2.R0O

1—»[RO

Hpeeld

before: [() I 1 1 0

()IIJ

after: Il o0 1 1 1 0

7

(c) Rotate right without carry

RotateR #2,R0O

| RO
betore: P) P10
after: I 1 0 0 1 1 1 0

(d) Rotate right with carry

Figure 2.32 Rotate instructions.

RotateRC #2,R0

85

86

CHAPTER 2 ¢ MACHINE INSTRUCTIONS AND PROGRANS

2.10.3 MULTIPLICATION AND DIVISION

Two signed integers can be multiplied or divided by machine instructions with the same
format as we saw earlier for an Add instruction. The instruction

Multiply Ri.Rj
performs the operation
R/ <= [Ri] x [R]]

The product of two n-bit numbers can be as large as 2n bits. Therefore. the answer
will not necessarily fit into register R /. A number of instruction sets have a Multiply
mstruction that computes the low-order n bits of the product and places it in register
Rj. as indicated. This is sufficient if it is known that all products in some particular
application task will fit into 7 bits. To accommodate the general 2n-bit product case.
some processors produce the product in two registers. usually adjacent registers R j and
R(j +). with the high-order half being placed in register R(j + 1).
Although it is less common. some instruction sets provide a signed integer Divide

instruction

Divide Ri.Rj
which performs the operation

Rj —[Rj]/[Ri]

placing the quotientin R /. The remainder may be placed in R(j + 1). or it may be lost.

Computers that do not have Multiply and Divide instructions can perform these
and other arithmetic operations by using sequences of more basic instructions such as
Add. Subtract. Shift. and Rotate. This will become more apparent when we describe
the implementation of arithmetic operations in Chapter 6.

2.11 EXAMPLE PROGRAMS

In this section we present three examples that further illustrate the use of machine
mstructions. The examples are representative of numeric (vector processing) and non-
numeric (sorting and linked-list manipulation) applications.

2.11.1 VECTOR DOT PRODUCT PROGRAM

The first example is a numerical application that is an extension of the loop program of
Figure 2.16 for adding numbers. In caleulations that involve vectors and matrices. it is
often necessary 1o compute the dot product of two vectors. Let A and B be two vectors
of length 5. Their dot product is defined as

n-

Dot Product = ZA(i) x B(/)

i==0)

2.1 1 EXAMPLE PROGRAMS

AMove #AVECRI R1 points to vector AL

Move #DBVEC.R2 R2 points ta vector B

Move N.R3 R3 serves as a connter.

Clear RO RO acaaumudates the dot product.
LOOP Move (R1)+.R4 Compute the product of

AMultiply (R2)+. 14 HENT COTPONCNTS.

Add RLRO Add to previons s

Decrement R3 Decrement the connter,

Branch>0 LOOD Loop again if not done.

Move RO.DOTPROD Store dot product i nemory.

Figure 2.33 A program for computing the dot product of two vectors.

Figure 2.33 shows a program for computing the dot product and storing it in memory
location DOTPROD. The first elements of each vector. A(Q) and B(0). are stored at
memory locations AVEC and BVEC. with the remaining elements in the following
word locations.

The task of accumulating a sum of products occurs in many signal-processing
applications. In this case. one of the vectors consists of the most recent 22 signal samples
in a continuing time sequence of inputs to a signal-processing unmit. The other vector is

aset ot n weights. The i signal samples are multiplied by the weights. and the sum of

these products constitutes an output signal sample.

Some computer instruction sets combine the operation of the Multiply and Add
instructions used in the program in Figure 2.33 into a single MultiplyAccumulate
instruction. We will see an example of this in the ARM processor in Chapter 3.

2.11.2 BYTE-SORTING PROGRAM

Consider a program for sorting a list of bytes stored in memory into ascending alpha-
betic order. Assume that the list consists of 72 bytes. not necessarily distinet. and that
cach byte contains the ASCII code for a character from the set of letters A through
Z. In the ASCII code. presented in Appendix E. the letters AL B, ... Z. are repre-
sented by 7-bit patterns that have increasing values when interpreted as binary numbers.
When an ASCII character is stored in a byte location. 1t is customary to set the most-
significant bit position to 0. Using this code. we can sort a list of characters alphabeti-
cally by sorting their codes in increasing numerical order. considering them as positive
numbers.

Let the list be stored in memory locations LIST through LIST 41 — [and let n2 be
a 32-bit value stored at address N. The sorting is to be done in place. that is. the sorted
list is to occupy the same memory locations as the original list.

We sort the list using a straight-selection sort algorithm. First. the largest number
is found and placed at the end of the list in location LIST + n — 1. Then the largest

87

88

CHAPTER 2 +« DMACHINE INSTRUCTIONS AND PROGRAMS
for (j=n-1l:j>0:j=7-1)
{for i k=j-1l:k>=0:k=k~-1)
(LIST[A > LIST[J1)
{ TEMP = LIST|A]:
LIST[k} = LIST[j|:
LIST{j] = TEMND:
}
}
(a) C-language program for sorting
Move #LIST R0 Load LIST into base register RO.
Aove N.R1 Initialize outer loop index
Subtract #1.1R1 register R to j = n — 1.
OUTER NMove R1.R2 Initialize inner loop index
Subtract #1.R1 register R2 to A = j— 1.
AMoveByte (RO.R1)1.R3 Load LIST{(j) into R3. which holds
current maxinun in sublist.
INNER CompareByte R3.(R0O.R2) If LIST(A) < [R3].

Branch<o

do not exchange.

MoveByte (RO.R2).R4 Otherwise. exchange LIST(A)
AMoveByte R3.(ROR2) with LIST(/) and load
NMoveByte R4(RORT) new waxinnun into R3.
MoveByte RIR3 Register R4 serves as TEMI.
NEXT Decrement R2 Decrement index registers R2 and
Branch >0 INNER R1. which also serve as
Decrement R1 as loop counters. and branch

Branch>0

OUTER

back if loops not tinished.

(b) Assembly language program for sorting

Figure 2.34 A byte-sorting program using straight-selection sort.

number in the remaining sublist of n — | numbers is placed at the end of the sublist in
location LIST + i1 — 2. The procedure is repeated until the list is sorted. A C-language
program for this sorting algorithm is shown in Figure 2.34a. where the list is treated
as a one-dimensional array LIST(0) through LIST(# — 1). For each sublist LIST()
through LIST(0). the number in LIST(/) is compared with each of the other numbers
in the sublist. Whenever a farger number is found in the sublist. it is interchanged with
the number in LIST().

2.11 EXAMPLE PROGRAMS

The C-language program traverses the list backwards. This order of traversal sim-
plifies loop termination in the machine language version of the program because the
loop 1s exited when an index is decremented to 0.

An assembly language program that implements the sorting algorithm is given in
Figure 2.34bh. The comments in the program explain the use of various registers. The
current maximum value is kept in register R3 while a sublist is being scanned. If a
larger value is found. it is exchanged with the value in R3 and the new largest value is
stored in LIST(/).

Control flow is handled differently in the two programs for purposes of effi-
cieney in the assembly language program. Using the if~then control statement in the
C-language program causes the three-line tien clause to exchange LIST(k) and LIST()
if LIST(A) = LIST(j). In the assembly language program, a branch is taken around the
four-instruction exchange code if LIST(k) < LIST().

If the machine instruction set allows a move operation from one memory location
directly to another memory location. then the four-instruction exchange code in the
inner toop in Figure 2.34b can be replaced by the three-instruction sequence

MoveByte (RO.R2).(RO.R1)
MoveByte R3.(R0O.R2)
MoveByte (RO.R1).R3
As we will see in Chapter 3. the 68000 processor has this capability.
Finally. we note that the program in Figure 2.34h works correctly only if the list has

at least two elements because the check for loop termination is done at the end of each
loop. Hence. there is at least one pass through the loop. regardless of the value of n.

2.11.3 LINKED LISTS

Many nonnumeric application programs require that an ordered list of information items
be represented and stored in memory in such a way that it is easy to add items to the list

or to delete items from the list at any position while maintaining the desired order of

items. This is a more general situation than found in the stack and queue data structures,
discussed in Section 2.8, where items can only be added or deleted at the ends. Consider
the following example. The course list of student test scores that we used in Section 2.5
1o illustrate the Index addressing mode contains the unique student ID number in the
tirst word of each four-word student record shown in Figure 2.1-4. Suppose we try to
maintain this list of records in consecutive memory locations in some contiguous block
of memory in increasing order of student ID numbers. This would facilitate printing
and posting the list of test scores ordered by 1D number. After the list is built, it a
student withdraws from the course an empty record slot is created. It is then necessary
to jump over the empty slot when going through the records to add up test scores or to
print a listing. A more awkward situation arises after the initial.construction of the list
if another student registers in the course. To keep the list ordered. all records. starting
from the one with the first ID number Jarger than the new ID would need to be moved
to higher address locations to create a four-word space for the new record. Similarly.

89

CHAPTER 2 +« NACHINE INSTRUCTIONS AND PROGRAMS

Link address

l

Record 1 g Record 2 o Record & 0

Head Tail
(a) Linking structure

Record | b Record 2 *—t— - - - - - -

New record .

(b) Inserting a new record between Record 1 and Record 2

Figure 2.35 Llinked-list data structure.

to handle the previously mentioned withdrawal of a student. the resulting empty slot
could be removed by moving all records after the empty slot to lower address locations.,
closing the gap.

A data structure called a linked list can be used to avoid both of these problems.
Each record still occupies a consecutive four-word block in the memory. but successive
records in the order do not necessarily occupy consecutive blocks in the memory address
space. To enable connecting the blocks together to form the ordered list. each record
contains an address value in a one-word link field that specifies the location of the next
record in order. Hence the name linked list is used to describe this data structure. A
schematic representation for a linked list is shown in Figure 2.35«. The first record in
the listis called the siead. and the last record is called the rail.

To insert a new record between record 7 and record 7 + 1. the link address in
record i is copied into the link field in the new record and then the address of the new
record is written into the link field of record /. This operation is shown schematically
in Figure 2.35b. To delete record i. the address in its link field is copied into the link
field of record 7 - 1.

Figure 2.36 shows an example of the student test score records linked together
in memory. ordered by increasing 1D numbers. Each record is now five words long.
The first word. defined as the kev field. contains the student 1D number. The second
word contains the link ficld. and the last three words are the data field that contains
the three test scores. Assuming 32-bit words. a 2000-byte area of memory. starting at
word address 1000. is allocated to contain the five-word records. 20 bytes per record.
for up to 100 students. As students register for the course. they are assigned one of

2.11 EXAMPLE PROGRAMS

Memory Key Link Data
address field f1eld ficld
(1) (Test scores)
I word I word 2 words
First |
record 2320 27243 1040 Head

Second
record L» 1040 | 28106 1200

— 1200 28370 2886}

T

Third
record

S

Second last
wcord = 27200 | 40632 1280
Last .
record L= [280 47871 0 Tail

Figure 2.36 A list of student test scores organized as a linked list in memory.

the available five-word record blocks in memory. It may be convenient to do this in
block address order 1000, 1020. 1040. 2980, but that is not necessary. There is no
particular relationship between student IDs and the order in which students register for
the course. Therefore, the locations of the record blocks, ordered by student ID. will
be scattered in some unpredictable way across the assigned memory area from block
address 1000 to block address 2980.

The record with the current lowest ID number is at the head of the list. and the
record with current highest ID number is in the tail position. A convenient way (o access
the list is to store the memory address of the head. in this case 2320. in a processor
register called the head pointer. The address 1040 in the link ficld of the first record
specifies the location of the second record. The link field of the second record contains
the address 1200 of the third record. and so on. The link field of the last record is set
to zero to denote that it is the tail entry in the fist. If the list is empty. the head pointer
contains zero.

91

CHAPTER 2 -+ MACHINE INSTRUCTIONS AND PROGRAMS

Insertion of a New Record

Letus now give the steps needed to add a new record to the list shown in Figure 2.36.
Suppose that the ID number of the new record is 28241, and the next available free
record block is at address 2960. Trace forward from the head record until the first record
with a larger ID is found. This is the record at memory location 1200, containing the 1D
28370. Now insert the address link 1200 into the link field of the new record. and then
insert the address of the new record. 2960. into the link field of the previous record at
location 1040. overwriting the old value of 1200. Now. the new record has been inserted
as the third record in the updated list. between the second and third records of the
old hist.

A subroutine for performing the insertion operation is shown in Figure 2.37. It is
composed of three sections to handle the following three possible cases: the current
list is empty. the new record becomes the new head of a nonempty list. or the new
record is inserted in the list somewhere after the current head. The last case includes
the possibility that the new record becomes the tail.

INSERTION Compare #). RHEAD
! Branch>0 HFAD B :] EZYO;ETT
not empty r::;n RNEWREC, RHEAD one-entry list
l—' HEAD Compare (RHEAD). (RNEWREC)
] Branch>0 SEARCH
insert new record Move RHEAD. 4(RNEWREC)] ﬁtf():flt:"d
somewhere after Move RNEWREC, RHEAD new head
current head Return
L e SEARCH Move RHEAD. RCURRENT
LOOP Move HRCURRENT). RNEXT

Compare #0). RNEXT
| Branch=0 TAIL

new record becomes new tail Compare (RNEXT). (RNEWRECQ)
f Branch<0 INSERT
insert new record in Move RNEXT. RCURRENT
an interior position Branch LOOP
L’ INSERT Move RNEXT. 4HRNEWREC)
TAIL Move RNEWREC., 4RCURRENT)
Return

Figure 2.37 A subroutine for inserting a new record into a linked list.

2.11 EXAMPLE PROGRAMS

Consider now how the subroutine handles the three possible cases. A number of
processor registers are used in the subroutine. Instead of the usual names RO, R, R2.
and so on. we use more descriptive names to aid understanding. RHEAD is the head
pointer, and RNEWREC contains the address of the new record. The two registers
RCURRENT and RNEXT contain the addresses of the current record and the next
record as the list is scanned to find the correct position for inserting the new record.
The link field of the new record is initially set to zero. If it becomes the new tail, no
further changes to this field are necessary.

The first Compare/Branch pair of instructions checks whether or not the list is
empty. If it 1s empty (RHEAD contains 0), the new record becomes a one-entry list
by moving its address into RHEAD, followed by a Return instruction; otherwise, the
second Compare/Branch pair checks whether or not the new record becomes the new
head. If it does. the two Move instructions make the necessary changes to the link field
of the new record and the contents of RHEAD. and a Return is executed. If the new
record does not become the new head, the last half of the subroutine determines the
position in the list where the new record 1s to be inserted. It is then inserted at the correct
interior position by the last two Move instructions, or it is made the new tail by the last
Move instruction. We have omitted saving and restoring registers in this subroutine to
improve readability and understanding of the insertion operation.

Deletion of a Record

The deletion of an existing record from a linked list is an easier operation than the
insertion of a new record. We simply go forward through the list until we find the ID
of the record that is to be deleted. The necessary link field adjustments are then made.

Figure 2.38 shows a subroutine that implements the deletion operation. We assume
that a register RIDNUM contains the 1D of the record to be deleted. Registers RHEAD.
RCURRENT. and RNEXT. play the same roles as in the insertion subroutine. The first
Compare/Branch pair of instructions checks whether or not the record to be deleted
is the head. 1f it is, the record is deleted by moving the link field address of the head
record into RHEAD. Note that if the head is the only record in the list. then its link field
contains zero, signifying that it is also the tail. So moving this zero into RHEAD properly
signifies the empty hist condition. If the head record is not the record to be deleted. then
a branch is made to SEARCH. Now, registers RCURRENT and RNEXT are used to
scarch forward from the head until the desired record is found. When the desired record
is found by the second Compare/Branch pair. a branch is made to DELETE. The record,
pointed to by RNEXT, is removed by transterring its link field to the link field of the
previous record. pointed to by RCURRENT. The last two Move instructions accomplish
this transfer through the register RTEMP. If a memory-to-memory Move instruction is
available, then the single instruction

Move 4HRNEXT)4RCURRENT)
can replace these two Move instructions.

Error Conditions

The insertion and deletion subroutines in Figures 2.37 and 2.38 do not take into
account the possibility of two error conditions. The insertion subroutine makes the

93

94

e,

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

DELETION Compare (RHEAD). RIDNUM
Branch>0 SEARCH
[Move HRHEAD). RHEAD
not the head record)
Return
I_, SEARCH Move RHEAD. RCURRENT
[.OOP Move 4(RCURRENT), RNEXT
Compare (RNEXT). RIDNUM
Branch=0 DELETE
Move RNEXT. RCURRENT
Branch LOOP
DELETE Move HRNEXT). RTEMP
Move RTEMP. 4 RCURRENT)
Return

Figure 2.38 A subroutine for deleting o record from a linked list.

assumption that there is no record in the list with the new ID. and the deletion subroutine
assumes that there is a record with the [D 1o be deleted. Modifying the subroutines to
account for these error possibilities is considered in problems 2.23 and 2.24.

2.12 ENCODING OF MACHINE INSTRUCTIONS

We have introduced a variety of useful instructions and addressing modes. These in-

“structions specity the actions that must be performed by the processor circuitry to carry

out the desired tasks. We have often referred to them as machine instructions. Actually.
the form in which we have presented the instructions is indicative of the forms used
in assembly languages, except that we tried to avoid using acronyms for the various
operations. which are awkward to memorize and are likely to be specific to a particular
commercial processor. To be executed in a processor. an instruction must be encoded in
acompact binary patiern. Such encoded instructions are properly referred to as machine
instructions. The instructions that use symbolic names and acronyms are called assem-
blv language instructions, which are converted into the machine instructions using the
assembler program as explained in Section 2.6. |

In the previous sections, we made a simplifying assumption that all instructions
are one word in length. Since we usually refer to 32-bit words. our assumption implies
that this length is adequate to represent the necessary information. Let us now consider
the validity of this assumption.

/We have seen instructions that perform operations such as add. subtract. move.
shih. rotate, and branch. These instructions may use operands of different sizes. such
as 32-bit and 8-bit numbers or 8-bit ASCll-encoded characters. The type of operation
that is to be performed and the type of operands used may be specified using an encoded

2.12 ENCODING OF MACHINE INSTRUCTIONS

binary pattern referred to as the OP code for the given instruction. Suppose that 8 bits are

allocated for this purpose. giving 256 possibilities for specifying different instructions.

This leaves 24 bits to specify the rest of the required information. i ‘
Let us examine some typical cases. The instruction -

Add RI.R2

has to specify the registers R1 and R2. in addition to the OP code. If the processor
has 16 registers. then four bits are needed to identify each register. Additional bits are
needed to indicate that the Register addressing mode is used for each operand.

The instruction

Move 24(RC),RS

requires 16 bits to denote the OP code and the two registers. and some bits to express
that the source operand uses the Index addressing mode and that the index value is 24.
Suppose that three bits are used to specify an addressing mode in Table 2.1. Then six
bits have to be available for this purpose. denoting the chosen addressing modes of the
source and destination operands. Hence, there are 10 bits left to give the index value.
If these 10 bits suffice to express an adequate range of signed numbers for indexing
purposes, then the instruction fits into our 32-bit word.
The shift instruction

LshiftR #2.R0O
and the move instruction
Move #3$3A.RI1

have to indicate the immediate values 2 and $3A,, respectively. in addition to the 18 bits
used to specify the OP code, the addressing modes, and the register. This limits the size
of the immediate operand to what is expressible in 14 bits. "

Consider next the branch instruction

Branch>0 LOOP

Again, 8 bits are used for the OP code, leaving 24 bits to specity the branch offset.
Since the offset is a 2's-complement number. the branch target address must be within
223 bytes of the location of the branch instruction. To branch to an instruction outside
this range. a different addressing mode has to be used, such as Absolute or Register
Indirect. Branch instructions that use these modes are usually called Jump instructions.

In all these examples. the instructions can be encoded in a 32-bit word. Figure 2.39a
depicts a possible format. There is an 8-bit OP-code field and two 7-bit fields for
specifying the source and destination operands. The 7-bit field identifies the addressing
mode and the register involved (if any). The “Other info™ field allows us to specify the
additional information that may be needed. such as an index value or an immediate
operand.

‘But. what happens if we want to specify a memory operand using the Absolute
addressing mode? The instruction \\,

‘Move R2.1.0C

95

96

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

8 7 7 10

OP code Source Dest Other info

(a) One-word instruction

OP code Source Dest Other info

Memory address/Immediate operand

(b) Two-word instruction

OP code Ri R/ Rk Other info

(c) Three-operand instruction

Figure 2.39 Encoding instructions into 32-bit words.

requires 18 bits to denote the OP code. the addressing modes. and the register. This leayes

- 14 bits to express the address that corresponds to LOC, which is clearly insufficient. If

we want to be able to give a complete 32-bit address in the instruction. then the only
solution is to include a second word as a part of this instruction. in which case the
additional word can contain the required memory address. A suitable format is shown
in Figure 2.395, The first word may be the same as in part « of the figure. The second
is a full memory address. This format can also accommodate instructions such as

And #$FF000000.R2

in which case the second word gives a full 32-bit immediate operand.
If we want to allow an instruction in which two operands can be specitied using
the Absolute addressing mode. for example

Move LOCI.LOC2

then it becomes necessary to use two additional words for the 32-bit addresses of the
operands.

This approach results in instructions of variable length. dependent on the num-
ber of operands and the type of addressing modes used. Using multiple words. we
can implement quite complex instructions. closely resembling operations in high-level

2.12 ENCODING OF MACHINE INSTRUCTIONS

programming languages. The term complex instruction set computer (CISC) has been
used to refer to processors that use instruction sets of this type.

There exists a radically different alternative to this approach. If we insist that all
instructions must fit into a single 32-bit word, it is not possible to provide a 32-bit
address or a 32-bit immediate operand within the instruction. But, it is still possible to
define a highly functional instruction set, which makes extensive use of the processor
registers. Thus, we can have

Add RI.R2
but not
Add LOCR2

Instead of the latter instruction, we can use
Add (R3),R2

provided that we load the address LOC into register R3 before the instruction is exe-
cuted. In this case, register R3 is being used as a pointer to the desired memory location.

This raises the issue of how to load a 32-bit address into a register that serves as
a pointer to memory locations. One possibility is to direct the assembler to place the
desired address in a word location in a data area close to the program. Then the Relative
addressing mode can be used to load the address. This assumes that the index field
contained in the Load instruction is large enough to reach the location containing the
desired address. Another possibility is to use logical and shift instructions to construct
the desired 32-bit address by giving it in parts that are small enough to be specifiable
using the Immediate addressing mode. This issue is considered in more detail for the
ARM processor in Chapter 3. All ARM instructions are encoded into a single 32-bit
word.

The restriction that an instruction must occupy only one word has led to a style of
computers that have become known as reduced instruction set computers (RISC). The
RISC approach introduced other restrictions, such as that all manipulation of data must
be done on operands that are already in processor registers. This restriction means that
the above addition would need a two-instruction sequence

Move (R3).R1
Add RIR2

If the Add instruction only has to specify the two registers, it will need just a portion of
a 32-bit word. So, we may provide a more powerful instruction that uses three operands

Add RI1,R2R3
which performs the operation
R3 « [R1]+[R2]

A possible format for such an instruction is shown in Figure 2.39¢. Of course, the
processor has to be able to deal with such three-operand instructions. In an instruction set
where all arithmetic and logical operations use only register operands, the only memory
references are made to load/store the operands into/from the processor registers.

97

98

2.1

2.2

CHAPTER 2 ¢ MACHINE INSTRUCTIONS AND PROGRAMS

RISC-type instruction sets typically have fewer and less complex instructions than
CISC-type sets. We will discuss the reiative merits of RISC and CISC approaches in
Chapter 8. which deals with the details of processor design.

2.13 CONCLUDING REMARKS

This chapter introduced the representat:on and execution of instructions and programs
at the assembly and machine level as seen by the programmer. The discussion em-
phasized the basic principles of addressing techniques and instruction sequencing. The
programming examples illustrated the basic types of operations implemented by the
instruction set of any modern computer. Several addressing modes were introduced.
including the important concepts of pointers and indexed addressing. Basic 1/O oper-
ations were discussed. showing how characters are transterred between the processor
and keyboard and display devices. The subroutine concept and the instructions needed
to implement it were also discussed. Subroutine linkage methods provided an example
of the application of the stack data structure. The way in which machine instructions
manipulate other data structures was also explained. Queues. arrays. and linked lists
were considered. We described two different approaches to the design of machine in-
struction sets — the CISC and RISC approaches. The excecution-time performance of
these two design stvles will be further developed in Chapter 8.

PROBLEMS

Represent the decimal values 5. —2. 1=, —10. 26. —19. 51, and —43. as signed. 7-bit
numbers in the following binary formats:
(a) Sign-and-magnitude
(b) 1's-complement
(¢) 2's-complement
(See Appendix E for decimal-to-binary integer conversion.)
{a)y Convert the following pairs of decimal numbers to 5-bit. signed. 2's-complement.
binary numbers and add them. State whether or not overflow occurs in each case.
(a) 5and 10
(h)y 7and 13
(¢y —I14and I
() —Sand 7
(¢) —3and =8
(fy —10and —13
(h) Repeat Part ¢ for the subtract operation. where the second number of cach pair is

to be subtracted from the first number. State whether or not overflow occurs in
cach case.

23

24

2,5

2.6
2.7

2.8

2,9

2,10

211

PROBLEMS 99

Given a binary pattern in some memory location, is it possible to tell whether this
pattern represents a machine instruction or a number?

A memory byte location contains the pattern 00101 100. What does this pattern represent
when interpreted as a binary number? What does it represent as an ASCII code?

Consider a computer that has a byte-addressable memory organized in 32-bit words
according to the big-endian scheme. A program reads ASCII characters entered at a
keyboard and stores them in successive byte locations, starting at location 1000. Show
the contents of the two memory words at locations 1000 and 1004 after the name
“Johnson™ has been entered.

Repeat Problem 2.5 for the little-endian scheme.

A program reads ASCII characters representing the digits of a decimal number as they
are entered at a keyboard and stores the characters in successive memory bytes. Examine
the ASCII code in Appendix E and indicate what operation is needed to convert each
character into an equivalent binary number.

Write a program that can evaluate the expression
AxB+CxD

in a single-accumulator processor. Assume that the processor has Load, Store, Multiply,
and Add instructions, and that all values fit in the accumulator.

The list of student marks shown in Figure 2.14 is changed to contain j test scores for
each student. Assume that there are » students. Write an assembly language program
for computing the sums of the scores on each test and store these sums in the memory
word locations at addresses SUM, SUM + 4, SUM + 8, The number of tests, j. is
larger than the number of registers in the processor, so the type of program shown in
Figure 2.15 for the 3-test case cannot be used. Use two nested loops, as suggested in
Section 2.5.3. The inner loop should accumulate the sum for a particular test, and the
outer loop should run over the number of tests. j. Assume that j is stored in memory
location J, placed ahead of location N.

(a) Rewrite the dot product program in Figure 2.33 for an instruction set in which
the arithmetic and logic operations can only be applied to operands in processor
registers. The two instructions Load and Store are used to transfer operands between
registers and the memory.

(b) Calculate the values of the constants k; and k> in the expression k| + kan, which
represents the number of memory accesses required to execute your program for
Part a, including instruction word fetches. Assume that each instruction occupies
a single word.

Repeat Problem 2.10 for a computer with two-address instructions, which can perform
operations such as

A < [A] +[B]

where A and B can be either memory locations or processor registers. Which computer

100

2,12

2.13

2.14

2.15

2.16

2.17

CHAPYER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

requires fewer memory accesses? (Chapter 8 on pipelining gives a different perspective
on the answer to this question.)

“Having a large number of processor registers makes it possible to reduce the number
of memory accesses needed to perform complex tasks.” Devise a simple computational
task to show the validity of this statement for a processor that has four registers compared
to another that has only two registers.

Registers R1 and R2 of a computer contain the decimal values 1200 and 4600. What is
the effective address of the memory operand in each of the following instructions?

(a¢) Load 20(R1),R5

(b) Move #3000,RS

(¢) Store R5.30(R1,R2)
(d) Add —(R2),R5

(¢) Subtract (R1)+.R5

Assume that the list of student test scores shown in Figure 2.14 is stored in the memory
as a linked list as shown in Figure 2.36. Write an assembly language program that
accomplishes the same thing as the program in Figure 2.15. The head record is stored
at memory location 1000.

Consider an array of numbers A(i,j), where i = 0 through n — 1 is the row index,
and j = 0 through m — [is the column index. The array is stored in the memory of
a computer one row after another, with elements of each row occupying m successive
word locations. Assume that the memory is byte-addressable and that the word length
is 32 bits. Write a subroutine for adding column x to column y, element by element,
leaving the sum elements in column y. The indices x and y are passed to the subroutine
inregisters R1 and R2. The parameters n and m are passed to the subroutine in registers
R3 and R4, and the address of element A(0,0) is passed in register RO. Any of the
addressing modes in Table 2.1 can be used. At most, one operand of an instruction can
be in the memory.

Both of the following statements cause the value 300 to be stored in location 1000, but
at different times.
ORIGIN 1000
DATAWORD 300
and
Move #300.1000
Explain the difference.

Register R5 is used in a program to point to the top of a stack. Write a sequence of
instructions using the Index. Autoincrement, and Autodecrement addressing modes to
perform each of the following tasks:

(a) Pop the top two items off the stack, add them, and then push the result onto the
stack.

2.18

2.19

2.20

2.22

PROBLEMS 101

(b) Copy the fifth item from the top into register R3.
(¢) Remove the top ten items from the stack.

A FIFO queue of bytes is to be implemented in the memory, occupying a fixed region
of k bytes. You need two poiaters, an IN pointer and an OUT pointer. The IN pointer
keeps track of the location where the next byte is to be appended to the queue, and the
OUT pointer keeps track of the location containing the next byte to be removed from
the queue.

(@) Asdataitems are added to the queue, they are added at successively higher addresses
until the end of the memory region is reached. What happens next, when a new
item is to be added to the queue?

(b) Choose a suitable definition for the IN and OUT pointers, indicating what they
point to in the data structare. Use a simple diagram to illustrate your answer.

(¢) Show thatif the state of the queue is described only by the two pointers, the situations
when the queue is completely full and completely empty are indistinguishable.
() What condition would ycu add to solve the problem in part ¢?

(e) Propose a procedure for manipulating the two pointers IN and OUT to append and
remove items from the queue.

Consider the queue structure described in Problem 2.18. Write APPEND and REMOVE
routines that transfer data between a processor register and the queue. Be careful to
inspect and update the state of the queue and the pointers each time an operation is
attempted and performed.

Consider the following possibilities for saving the return address of a subroutine:

(a) In a processor register

(b) In a memory location associated with the call, so that a different location is used
when the subroutine is called from different places

(¢) On astack

Which of these possibilities supports subroutine nesting and which supports subroutine
recursion (that is, a subroutina that calls itself)?

The subroutine call instructicn of a computer saves the return address in a processor
register called the link register, RL. What would you do to allow subroutine nesting?
Would your scheme allow the subroutine to call itself?

Assume you want to organize subroutine calls on a computer as follows: When routine
Main wishes to call subroutine SUBI, it calls an intermediate routine, CALLSUB, and
passes to it the address of SUBI as a parameter in register RI. CALLSUB saves the
return address on a stack, making sure that the upper limit of the stack is not exceeded.
Then it branches to SUBI. To return to the calling program, subroutine SUB1 calls
another intermediate routine. RETRN. This routine checks that the stack is not empty
and then uses the top element to return to the original calling program.

Write routines CALLSUB and RETRN, assuming that the subroutine call instruc-
tion saves the return address n a link register, RL. The upper and lower limits of the

102

223

224

CHAPTER 2 + MACHINE INSTRUCTIONS AND PROGRAMS

stack are recorded in memory locations UPPERLIMIT and LOWERLIMIT. respec-
tively.

The linked-list insertion subroutine in Figure 2.37 does not check if the ID of the new
record matches that of a record already in the list. What happens in the execution of
the subroutine if this is the case? Modity the subroutine to return the address of the
matching record in register ERROR if this occurs or return a zero if the insertion is
successful.

The linked-list deletion subroutine in Figure 2.38 assumes that a record with the 1D
contained in register RIDNUM is in the list. What happens in the execution of the
subroutine if there is no record with this ID? Modify the subroutine to return a zero in
RIDNUM if deletion is successful or leave RIDNUM unchanged if the record is not in
the list.

